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ABSTRACT

ENTROPY ESTIMATION METHODS AND HEALTH TESTS FOR
CRYPTOGRAPHIC RANDOM NUMBER GENERATORS

Aslan, Melis
Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

September 2024, 70 pages

Random numbers play a crucial role in cryptography since the security of crypto-
graphic protocols relies on the assumption of the availability of uniformly distributed
and unpredictable random numbers to generate secret keys, passwords, initialization
vectors, nonces, salt, etc. True Random Number Generators (TRNGs) extract ran-
dom numbers from physical processes (such as radioactive decay, thermal noise, and
atmospheric noise) that are inherently unpredictable. However, real-world random
number generators sometimes fail and produce outputs with low entropy, leading to
security vulnerabilities. It is commonly observed that the TRNG outputs have sta-
tistical biases and dependencies that make them unsuitable to be directly used for
cryptographic purposes. There are some standards and guidelines on generating and
testing random numbers that are suitable for cryptographic applications.

The National Institute of Standards and Technology (NIST) Special Publication (SP)
800-90 series provide guidelines and recommendations for generating random num-
bers for cryptographic applications and describes statistical randomness testing, esti-
mating min-entropy with 10 black-box entropy estimation methods. In this thesis, we
evaluate the effectiveness and limitations of the SP 800-90B methods by exploring the
accuracy of these estimators using simulated random numbers with known entropy,
investigating the correlation between entropy estimates, and studying the impacts of
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deterministic transformations on the estimators.

To understand the unpredictability of the outputs, it is important to estimate their en-
tropy accurately. The National Institute of Standards and Technology (NIST) Special
Publication (SP) 800-90B specifies ten min-entropy estimators ranging from simple
frequency-based estimators to more advanced approaches. Each estimator has spe-
cific assumptions, making them suitable for different types of sources. The mini-
mum of these estimates is assumed to be the min-entropy of the TRNG. We propose
a new entropy estimator (estimates min-entropy and also Shannon entropy) called
index-value coincidence estimate that is suitable for outputs that might include some
dependencies and we also provide some experimental results that demonstrate the
effectiveness of the estimator.

Additionally, TRNGs may be affected by outside conditions such as temperature, hu-
midity, etc. Health tests are an integral part of the noise source of TRNG, defined
to detect unexpected changes in the working process and dramatic changes in the
amount of entropy generated by the noise source. Existing health test suites are exam-
ined, and a health test suite for cryptographic TRNGs is introduced by using random
variables weight, run, runs of length 1 and overlapping templates. Some suggested
parameters and experimental results are given.

Keywords: Random number generators, entropy, randomness, statistical randomness
tests, health tests, correlation
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ÖZ

KRİPTOGRAFİK RASTGELE SAYI ÜRETEÇLERİ İÇİN ENTROPİ TAHMİN
YÖNTEMLERİ VE SAĞLIK TESTLERİ

Aslan, Melis
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Eylül 2024, 70 sayfa

Rastgele sayılar kriptografide önemli bir rol oynar, kriptografik protokollerin güven-
liği gizli anahtarlar, parolalar, başlatma vektörleri, gürültü, maskeleme vektörleri gibi
dizileri üretmek için düzgün dağılıma sahip ve öngörülemeyen rastgele sayıların kul-
lanılabilirliği varsayımına dayanır. Gerçek Rastgele Sayı Üreteçleri (GRSÜ’ler), çe-
şitli fiziksel olgulardan (radyoaktif bozunma, termal gürültü ve atmosferik gürültü
gibi) rastgele sayılar üretirler ve bu üretim doğası gereği rastgele olarak kabul edilir.
fakat pratik uygulamalarda, rastgele sayı üreteçleri bazen başarısız olur ve düşük ent-
ropili çıktılar üretir, bu da güvenlik açıklarına yol açar. Genel olarak gözlemlendiği
üzere, Gerçek Rastgele Sayı Üreteçleri (GRSÜ) çıktılarında istatistiksel sapma ve
bağımlılıklar bulunmaktadır ve bu nedenle doğrudan kriptografik amaçlar için kulla-
nılmaya uygun değildirler. Kriptografik uygulamalar için uygun rastgele sayı üretme
ve test metotları konusunda standartlar ve kılavuzlar mevcuttur.

Ulusal Standartlar ve Teknoloji Enstitüsü (NIST) Özel Yayını (SP) 800-90 serisi,
kriptografik uygulamalar için rastgele sayı üretme konusunda kılavuzlar ve öneri-
ler sunmakta, istatistiksel rastgelelik testleri ve 10 kara kutu entropi tahmin yöntemi
tanımlamaktadır. Bu tezde, NIST SP 800-90B entropi tahmin yöntemlerinin etkin-
liğini ve sınırlamalarını, bilinen entropili simüle edilmiş rastgele sayılar kullanarak
deneysel olarak değerlendirmekte, bu tahmin edicilerin doğruluğu, entropi tahmin-
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leri arasındaki korelasyon ve deterministik dönüşümlerin tahmin ediciler üzerindeki
etkileri üzerine gözlemler yapılmaktadır.

Çıktıların öngörülemezliğini anlamak için entropilerini doğru bir şekilde tahmin et-
mek önemlidir. Ulusal Standartlar ve Teknoloji Enstitüsü (NIST) Özel Yayını (SP)
800-90B, basit frekans tabanlı tahmin edicilerden daha gelişmiş yaklaşımlara kadar
uzanan on adet minimum entropi tahmin edicisini belirlemektedir. Her tahmin edici-
nin belirli varsayımları vardır ve bu da onları farklı kaynak türlerini değerlendirmeye
uygun hale getirir. Bu tahminlerin minimumunun, GRSÜ’nin minimum entropisi ol-
duğu varsayılır. Bu tezde, bazı bağımlılıklar içerebilecek çıktıları değerlendirmek için
uygun olduğu öngörülen indeks-değer çakışması tahmini adı verilen yeni bir entropi
tahmin yöntemi tanımlanmaktadır ve yöntemin etkinliğini gösteren bazı deneysel so-
nuçlar sunulmaktadır.

Ek olarak, GRSÜ’leri çalışmaları sırasında sıcaklık, nem vb. gibi dış koşullardan et-
kilenebilir. Sağlık testleri, çalışma sürecindeki beklenmedik değişiklikleri ve gürültü
kaynağı tarafından üretilen entropi miktarındaki dramatik değişiklikleri tespit etmek
için tanımlanan GRSÜ’nin gürültü kaynağının bileşeni olarak tanımlanmaktadır. Ça-
lışmalar kapsamında literatürde bulunan sağlık testi paketleri incelenmiş ve ağırlık,
öbek , 1-uzunluğunda öbekler ve örtüşen kalıplar rastgele değişkenlerini kullanarak
kriptografik GRSÜ’leri için bir sağlık testi paketi tanımlanmıştır, test paketi için öne-
rilen parametreler ve deneysel sonuçlar sunulmaktadır.

Anahtar Kelimeler: Rastgele sayı üreteçleri, entropi, rastgelelik, istatistiksel rastgele-
lik testleri, sağlık testleri, korelasyon
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I am grateful to Seda Odacıoğlu for her technical expertise and support in developing
the software used in this research and conducting the experiments.

I would like to express my heartfelt thanks to my close friend, Pelin Çiloğlu, for her
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CHAPTER 1

INTRODUCTION

Throughout history, people have developed many solutions to ensure the security of

information they share through insecure channels. Primitive examples of encrypted

texts were seen in Egyptian hieroglyphs, and during the Roman period, the Caesar ci-

pher, which was created by shifting each letter of the alphabet forward a fixed number

of letters, is considered one of the first encryption methods in history. In parallel with

technological advances, encryption methods have also developed and changed. In

the computer age, encryption machines have given way to mathematical algorithms,

and powerful and advanced cryptographic functions that provide solutions to many

needs have been designed. Today, there are cryptographic algorithms designed in a

structure that even quantum computers cannot break. However, the security of these

algorithms, which are structurally known with all their details, depends on their se-

cret parts: cryptographic keys, passwords, nonce, salt, masking vectors, etc. These

are just random number sequences...

Random numbers are widely used in almost all cryptographic protocols to generate

secret keys, initialization vectors, nonce, salts, etc. The security of these protocols

relies on the assumption that these numbers are generated uniformly at random and

are unpredictable. Randomness of a sequence can be defined by three features; uni-

formity, independence and unpredictability.

Definition 1.0.1. Let S be a sequence of length n, generated by the elements of the

finite set A = {a1, a2, · · · , am}. S is accepted as a random sequence if the followings

hold:
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• Each element of A occurs in S with probability 1
m

.

• Each element of A is distributed in S uniformly.

• Each element of A is distributed in S independently.

For cryptographic purposes, random numbers are generated by random number gen-

erators (RNGs); they can be classified into two types: true random number gener-

ators (TRNGs) and pseudo-random number generators (PRNGs). TRNGs generate

sequences by measuring some physical phenomena that generate entropy, such as

radioactive decay, atmospheric noise, thermal noise, movement of an electron, etc.

On the other hand, PRNGs are deterministic algorithms and they extend seeds to

long random-looking sequences. However, real-world random number generators

sometimes fail to generate random sequences and produce outputs with low entropy,

leading to security vulnerabilities [10, 6].

A variety of organizations have developed standards and guidelines on generating

random numbers that are suitable for cryptographic applications, such as the National

Institute of Standards of Technology (NIST) [3, 32, 4, 28], the International Organi-

zation for Standardization (ISO) [14, 15, 13, 16], and Bundesamt für Sicherheit in der

Informationstechnik (BSI) [1, 2, 25].

Cryptographic random number generators are typically composed of multiple compo-

nents, including (i) a noise source that extracts randomness from physical phenomena

(e.g., thermal noise, mouse movements, radioactive decay, free-running oscillator)

to generate a seed,(ii) a conditioning component - pseudorandom number generator

(PRNG) (also known as a deterministic random bit generator) that extends the seed

to generate a long random-looking sequence, and (iii) health tests that verify the on-

going functionality of the noise source. Since PRNGs are deterministic, the entropy is

solely provided by the noise source, and it is important to measure the unpredictability

of the noise source outputs.

Designing random number generators for cryptographic use has many challenges,

including finding a robust noise source to extract randomness, difficulty of deter-

mining how unpredictable the outputs are (i.e., estimating its entropy), difficulty of

statistically modeling the process, difficulty of measuring the effects of environmental
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conditions (e.g. pressure, humidity, temperature) on the source.

Various statistical randomness tests can be applied to measure the quality of the ran-

dom numbers. The most commonly used statistical randomness suites are TESTU01

[21], DIEHARD [23], DIEHARDER [7], and NIST Special Publication (SP) 800-

22 Rev.1 [27]. These tests may not be suitable for assessing noise source outputs, as

they typically have strong biases and would fail these tests.

The unpredictability of noise source outputs is measured using entropy, and two com-

monly used measures of entropy are Shannon entropy and min-entropy. Min-entropy

is a more conservative measure, which is based on the probability of guessing the

most likely output of a randomness source.

Estimating the entropy of noise source outputs is challenging because the distribu-

tion of the output values is generally unknown. The BSI standards require stochastic

modeling of the noise source to specify a family of probability distributions to es-

timate entropy. Since stochastic modeling may not be possible or practical due to

the diversity and complexity of the random number generators, NIST standards allow

using black-box statistical methods for entropy estimation. It is also challenging to

construct statistical models for estimating entropy, and especially Shannon-entropy, it

requires probability estimations for each character in the alphabet set. For these rea-

sons, when number of statistical tests in statistical randomness test suits and entropy

estimation suites are compared, it is observed that the number of statistical random-

ness test are much more than entropy estimators. NIST SP 800-22A A Statistical Test

Suite for Random and Pseudorandom Number Generators for Cryptographic Applica-

tions offers 15 different statistical tests; on the other hand, NIST SP 800-90B contains

10 entropy estimators.

NIST SP 800-90B [32] introduces designing and testing models for entropy sources.

For testing process, SP 800-90B describes IID-Assumption tests: permutation tests

and additional chi-square tests, and ten entropy estimators: most common value, col-

lision, Markov, compression, t-tuple, longest repeated substring (LRS), multi most

common in window prediction, lag prediction, multiple Markov Model with Count-

ing (multiMMC) prediction, and LZ78Y. SP 800-90B defines two tracks to estimate

the min-entropy of an entropy source: independent and identically distributed (IID)
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and non-IID. If a sequence passes IID-Assumption tests, entropy estimation is done

via the most common value estimate; otherwise, the minimum of these ten estimates

is used to estimate the min-entropy of the noise source outputs. As a designing com-

ponent of an entropy source, this recommendation describes some requirements for

health tests and provides two approved health tests.

NIST SP 800-90 series serve as a foundational standard for building trust in the ran-

domness used within cryptographic systems in Cryptographic Algorithm Validation

Program (CAVP) and the Cryptographic Module Validation Program (CMVP). The

role of NIST SP 800-90B in CAVP and CMVP underscores its significance in ensur-

ing the security of cryptographic modules. NIST often incorporates feedback from

the community to refine its standards and guidelines, NIST SP 800-90B is currently

under revision. Developments in the area of random number generation and entropy

source verification are ongoing.

In literature, there are many studies evaluate accuracy of NIST SP 800-90B and to

increase the accuracy introduce new entropy estimation methods for cryptographic

RNGs. Zhu et al. [35] showed that the collision and compression estimates provide

significant underestimates and proposed a new estimator that achieves better accuracy

for min-entropy. Kim et al. [17] also showed that the compression estimate under-

estimates min-entropy and proposed two kinds of min-entropy estimators to improve

computational complexity and estimation accuracy by leveraging two variations of

Maurer’s test. Hill [11] demonstrated that the collision and compression estimators

incorrectly use the central limit theorem. Hill [11] also claimed that the Markov

estimator should not be directly compared to other estimators since it does not use

confidence intervals during estimation. Ma et al. [22] introduced a stochastic model

for estimating the entropy of ADC Sampling-Based True Random Number Genera-

tors, Li et al. [20] introduced a model for estimating min-entropy based on Pruning

and Quantized Deep Neural Network. Woo et al. [34] generalized LRS Estimator for

min-entropy estimation, and according to their experimental results generalized LRS

estimator improved the estimation accuracy significantly.

Additionally, for such test suites containing several number of statistical tests, it is

important to investigate the statistical relations and independence of each individual
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test for efficiency of the suite. For statistical randomness tests, there are some studies

investigating the relations and independence of individual tests. Turan et al. [33]

provided a correlation and sensitivity analysis of statistical randomness tests, Sulak et

al. [31] analyzed independence of statistical randomness tests included in the NIST

SP 800-22A and Doğanaksoy et al. [8] analyzed mutual correlation of NIST 800-

22A statistical randomness tests and compared of their sensitivities on transformed

sequences.

In this thesis, we focus on black-box statistical methods for entropy estimation. The

accuracy of the estimation process of NIST SP 800-90B [32] is analyzed with numer-

ous statistical experiments. This study also evaluates effectiveness, and limitations

of the SP 800-90B estimators using simulated random numbers with known entropy,

investigates the correlation between entropy estimates, and studies the impacts of

deterministic transformations on the estimators. We propose a new entropy estima-

tor called index-value coincidence estimate. This estimator is used to estimate both

min-entropy and Shannon entropy as the technique first estimates the probability dis-

tribution. Moreover, we investigate the details of existing health tests for TRNGs.

We construct a statistical model by using distributions of random variables weight,

run, runs of length 1 and overlapping templates. We introduce a health test suite for

cryptographic random number generators.

Contributions of this thesis. In this thesis, we mainly focus on evaluation of noise

source components of TRNGs with entropy estimation methods and health tests.

NIST SP 800-90B is the most commonly used standard for this purpose; in litera-

ture, there are some studies about techniques of SP 800-90B. However, this thesis

gives a more comprehensive analysis of this standard consisting of the accuracy of

estimators, the impact of IID-assumption tests, the correlation analysis of estimators,

and the impact of deterministic transformations on entropy estimators. To analyze

accuracy of entropy estimators, different data generation methods are designed and

simulated datasets are generated with known entropy, with these datasets we anal-

ysed the evaluation power of the test suite and each individual estimator. Similarly,

for IID-assumption tests, we design some biased generation methods to observe the

accuracy of tests and their impact on entropy estimation. In literature, this is the first

study that gives a comprehensive analysis of the mutual correlation of NIST SP 800-
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90B estimators by using two correlation metrics, Pearson correlation and Spearman

correlation. Moreover, some deterministic transformations are used to analyze the

changes in the entropy estimation results and promote similar studies to consider the

impacts of commonly used conditioning or post-processing functions. The results of

this part of the thesis may help to improve the accuracy of NIST’s entropy estimation

strategy and help users of NIST SP 800-90B to understand and analyze the results of

the test suite.

The second contribution of this thesis is that a new entropy estimation method: index-

value coincidence has been introduced. This estimator is a black-box statistical en-

tropy estimation method, gives accurate estimation results for simulated datasets and

experiments show that it can be employed synchronously with NIST estimators to

estimate min-entropy. Moreover, in the literature, there is no statistical-based esti-

mator for estimating the Shannon entropy of noise sources. Index-value coincidence

estimates Shannon entropy. For binary outputs, Shannon entropy estimates of NIST

SP 800-90B estimators and index-value coincidence are compared, and experimental

results show that index-value coincidence estimate gives more accurate estimations.

As the third contribution of this thesis, we introduce a mathematical model of health

test suites for TRNGs. In the literature, there are some guidelines and standards for

health tests; however, there are deficiencies left to the user, or test definitions with

unclear mathematical substructures are given. In this study, a mathematical model

for health tests is introduced and constructed with some selected random variables.

This study describes how to increase or decrease the number of random variables and

significance levels and customize the test suite for a specific noise source.

Organization. Chapter 2 provides preliminaries on RNGs, entropy, and some statis-

tical analysis techniques, chapter 3 presents detailed statistical analysis on NIST SP

800-90B containing evaluation for accuracy and correlations. Chapter 4 introduces

the new entropy estimator index-value coincidence estimate in detail. Chapter 5 intro-

duces the proposed health test suite with some mathematical backgrounds of random

variables and experimental results. Chapter 6 presents conclusion of the thesis.
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CHAPTER 2

PRELIMINARIES

2.1 Random Number Generators

Random numbers have a wide range of uses in scientific fields such as mathematics,

statistics, modeling, biology, computer science, and cryptography. Random numbers

are generated by random number generators (RNGs), a software algorithm or hard-

ware mechanism that generates random number sequences. There are mainly two

types of RNGs:

• True Random Number Generators (TRNGs)

• Pseudo Random Number Generators (PRNGs)

TRNG extracts randomness from physical phenomena, such as thermal noise, atmo-

spheric noise, radioactive decay, free-running oscillator, or movement of an electron.

A cryptographic TRNG is mainly composed of multiple components, including (i)

a noise source (entropy source) that extracts randomness from physical phenomena

to generate a seed, (ii) a processing function that extends the seed to generate a long

random-looking sequence, and (iii) health tests that verify the ongoing functional-

ity of the noise source. To increase the statistical quality and randomness of the

data generated by noise source, processing functions are used; they are deterministic

mathematical or cryptographic algorithms such as block ciphers, hash functions, etc.

Since processing functions are deterministic, the entropy is solely provided by the

noise source, and it is important to measure the unpredictability of the noise source

outputs.
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Figure 2.1: True Random Number Generator Model

PRNG (also known as a deterministic random bit generator) are deterministic al-

gorithms that generate random-looking sequences from seeds. Linear-feedback shift

registers or stream ciphers can be examples of PRNGs. Since the process is determin-

istic and by using the same seeds, the same sequences can be reproduced, the outputs

of PRNGs are called pseudo-random number sequences. They are used for cryp-

tographic purposes excessively because they reduce transmission and storage costs.

Similarly, it is important to test the outputs to understand the unpredictability of the

outputs.

Testing methodologies of RNGs can be categorized as follows:

1. Statistical Randomness Tests: The outputs of RNGs are tested by statistical

randomness tests, which examine certain statistical characteristics of the out-

put, compare the result to those in random sequences, and evaluate the outputs

in terms of randomness. In general, test suites containing several number of

statistical tests are constructed based on statistical methods such as chi-square

goodness-of-fit test, etc.

2. Entropy Estimation: The amount of unpredictability or uncertainty extracted

by the noise source of TRNG is evaluated by entropy estimation methods.
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These tests focus on physical components of the mechanisms. There are sta-

tistical and prediction-based block-box entropy estimation methods, and also

there are some stochastic models.

3. Health Tests: Health tests are integral parts of TRNGs, they are designed to

detect corruption and error in the working mechanism of the entropy source

and give warnings about unexpected changes, simultaneously. These tests are

designed as algorithms, checking basic randomness properties of middle step

outputs of TRNG, that provide fast results and have low time complexity.

In the content of this thesis, we focus on entropy estimation and health tests.

2.2 Entropy

In information theory, entropy was introduced by Claude Shannon, as a measure of

uncertainty associated with the outcomes of a random variable [29].

To measure how much information is produced by observing a set of possible events

whose probabilities of occurrence are p1, p2, · · · , pn, information function I can be

characterized with the following properties:

• I is continuous in pi’s.

• If the probabilities of occurrences are equal; that is, for each i, pi = 1
n

,then I is

a monotonic increasing function of n.

• When a complex choice follows smaller, sequential choices, the overall infor-

mation of the original choice can be calculated by adding up the information of

each individual choice, weighted by their probabilities.

It was deduced that a function satisfying these properties may be of the form

I = −K
n∑

i=1

pi log pi (2.1)

where K is a positive constant. Then entropy was defined by Shannon [29] as follows:
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Definition 2.2.1. Let X be a random variable that takes values from the set A =

{x1, x2, . . . , xn} with probabilities Pr(X = xi) = pi for i = 1, 2, . . . , n. The entropy

of the random variable X is defined as

H = −
n∑

i=1

pi log pi (2.2)

For example, when a fair coin is tossed, the probability of getting a Head and a Tail

are equal and 1
2
. The entropy is:

H = −
2∑

i=1

pi log pi (2.3)

= −(
1

2
log

1

2
+

1

2
log

1

2
) = 1 (2.4)

If the coin is not fair and the probability of getting a Head is 1
3

and a Tail is 2
3
. Then

the entropy is evaluated as:

H = −
2∑

i=1

pi log pi (2.5)

= −(
1

3
log

1

3
+

2

3
log

2

3
) = 0.9 (2.6)

In the second case, the tail is more likely to come up than the head, so the uncertainty

is less than in the first case.

Rényi introduced a class of entropy functions [26],

Definition 2.2.2. Let X be a random variable that takes values from the set A =

{x1, x2, . . . , xn} with probabilities Pr(X = xi) = pi for i = 1, 2, . . . , n. The Rényi

entropy of order-α of the random variable X is defined as

Hα =
1

1− α
log

( n∑
i=1

pi
α
)

(2.7)

where 0 < α < ∞ and α ̸= 1.

Note that, the limit when α → 1, Rényi entropy gives the Shannon entropy and

as α → ∞, the Rényi entropy is determined by the highest probability pi in the

distribution, this case is defined as minimum entropy.
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In literature, there are several measures of entropy. In general, most conservative one

min-entropy is used for the estimation of the entropy of RNGs.

Definition 2.2.3. Let X be a random variable that takes values from the set A =

{x1, x2, . . . , xn} with probabilities Pr(X = xi) = pi for i = 1, 2, . . . , n. The min-

entropy of the random variable X is defined as

H∞ = min
1≤i≤n

(− log2 pi) (2.8)

= − log2(max
1≤i≤n

pi). (2.9)

Entropy was defined as an average level of information or uncertainty associated with

the outcomes of a random variable, this measure is used in many applications such as

data compression, encoding, cryptanalysis, random number generation etc.

TRNGs typically rely on some physical processes (such as thermal noise, atmospheric

noise, radioactive decay, or electronic noise) to generate random numbers. It is im-

portant to measure the quality and variability of the physical phenomena that TRNG

relies on to contribute to the entropy. Entropy is used to evaluate noise sources of

TRNGs, there are some statistical based black-box models and stochastic models to

estimate the entropy of random number generators.

2.3 Correlation

Correlation is a measure that describes the statistical relation between two random

variables. The Pearson [24] and Spearman [30] correlation coefficients are commonly

used metrics to measure the correlation between two random variables. The correla-

tion coefficients take values between −1 and 1. A value close to 1 or −1 shows a

strong positive or negative association between variables, whereas a value close to 0

shows a weak association. See Table 2.1 for the interpretation of the Pearson r and

Spearman correlation coefficients ρ.
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Table 2.1: Interpretation of Pearson r and Spearman ρ correlation coefficients
Interval Interpretation
0 < |r|, |ρ| ≤ 0.20 Negligible correlation
0.2 < |r|, |ρ| ≤ 0.40 Weak correlation
0.4 < |r|, |ρ| ≤ 0.60 Moderate correlation
0.6 < |r|, |ρ| ≤ 0.80 High correlation
0.8 < |r|, |ρ| ≤ 1 Strong correlation

The Pearson correlation [24] measures the strength of a linear relationship between

two random variables, assuming that the variables are distributed normally, whereas

the Spearman correlation [30] describes the monotonic relationship between variables

without the assumption that the variables have normal distribution.

Definition 2.3.1. Let X and Y be random variables. The Pearson correlation co-

efficient r between a given paired dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} is defined

as

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (2.10)

where n is the sample size, xi and yi are sample points, x̄ is the sample mean of X ,

and ȳ is the sample mean of Y .

Definition 2.3.2. Let X and Y be random variables. The Spearman correlation co-

efficient ρ between a given paired dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} is defined

as

ρ = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
, (2.11)

where n is the sample size, and di is the difference between the rank of the paired

samples.

In this thesis, mutual correlations between entropy estimators on NIST SP 800-90B

are calculated according to Pearson’s and Spearman’s metrics. For necessary cases, to

control the false discovery rate, the Benjamini-Hochberg procedure [5] was applied to

interpret the results. We had multiple hypotheses regarding the correlations between

the tests. Therefore, we adjusted the P-values using Benjamini-Hochberg procedure

in order to reduce the false positive outcomes.
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CHAPTER 3

OBSERVATIONS ON NIST SP 800-90B

In this chapter, the effectiveness and limitations of the NIST SP 800-90 methods

are evaluated by exploring the accuracy of these estimators using simulated random

numbers with known entropy, investigating the correlation between entropy estimates,

studying the impacts of deterministic transformations on the estimators and impact of

IID-assumption tests on estimators.

3.0.1 Entropy Estimation Based on NIST SP 800-90B

NIST SP 800-90B [32] describes an entropy source model, that is composed of a

noise source, health tests, and an optional conditioning function. The standard also

provides guidelines for the generation of random numbers using entropy sources and

specifies entropy estimation techniques to ensure the randomness and unpredictability

of the outputs. These black-box techniques are applied to noise source outputs and

are independent of the internals of the noise source.

NIST SP 800-90B [32] defines two tracks to estimate the min-entropy of an en-

tropy source: independent and identically distributed (IID) and non-IID. To determine

which track to use, a number of statistical tests are applied to an output sequence gen-

erated by the entropy source to check the IID assumption. If the output sequence

passes these tests, the source is assumed to generate IID outputs, and only the most

common value method is used to estimate the entropy. Otherwise, the source is as-

sumed to generate non-IID outputs, and the minimum of the 10 NIST SP 800-90B

estimators is used to estimate the entropy of the source.
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NIST SP 800-90B [32] is testing IID assumption with some statistical tests based

on permutation (shuffling) tests and chi-square tests. For permutation tests, Fisher-

Yates shuffle algorithm is used to generate 10 000 permutations of the given sequence.

NIST SP 800-90B defines 11 test statistics for permutation tests. According to a

test statistic, the results of the original sequence and the results of permutations are

compared. Test statistics are listed with their evaluation metrics in Table 3.1.

Excursion, Number of Runs Based on Median, Length of Runs Based on Median, and

Compression test statistics are directly employed for binary sequences. For applying

the remaining test statistics, binary sequences are turned into integer sequences by

defined conversions.

Table 3.1: Test statistics of Permutation Tests of NIST SP 800-90B
Test Statistic Metric Directly applied

to binary

Excursion How far the running sum of samples deviates from aver-

age

✓

Number of Directional Runs The number of runs constructed using the relations be-

tween consecutive samples

×

Length of Directional Runs The length of longest run constructed using the relations

between consecutive samples

×

Number of Increases and

Decreases

The maximum number of increases or decreases between

consecutive samples

×

Number of Runs Based on

Median

The number of runs that are constructed with respect to

the median of the sequence

✓

Length of Runs Based on

Median

The length of the longest run that is constructed with re-

spect to the median of the sequence

✓

Average Collision The average of the number of successive sample values

until a duplicate is found

×

Maximum Collision The maximum of the number of successive sample val-

ues until a duplicate is found

×

Periodicity The number of periodic structures in the sequence ×

Covariance Measures the strength of the lagged correlation ×

Compression Measures length of the compressed string ✓

In NIST SP 800-90B [32], additional Chi-square statistical tests, defined for testing

independence and goodness-of-fit are also in IID-Assumption tests. The length of the

longest repeated substring test is also employed in the IID-Assumption part.
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NIST SP 800-90B [32] describes ten entropy estimators: most common value, col-

lision, Markov, compression, t-tuple, longest repeated substring (LRS), multi most

common in window prediction, lag prediction, multiple Markov Model with Count-

ing (multiMMC) prediction, and LZ78Y. The minimum of these ten estimates is used

to estimate the min-entropy of the noise source outputs. Table 3.2 lists the estimators

and corresponding metrics provided in the standard. Some of the estimators, namely

collision, Markov, and compression, are only defined for binary inputs (i.e., n = 2).

The estimators take noise source outputs S = (s1, s2, . . . , sL), where si ∈ A =

{x1, x2, . . . , xn} and return an min-entropy estimate between 0 and log2 n. Note that

to establish the final entropy estimate, the standard additionally considers the entropy

estimate from the designers, and the impact of the conditioning components, etc.

Table 3.2: Entropy Estimators of NIST SP 800-90B
Estimator Metric Support for

n > 2?

Most Common Value Proportion of the most common value in the input data

set

✓

Collision Probability of the most-likely output, depending on the

number of collisions

×

Markov Dependencies between consecutive values ×

Compression Compression amount of the input dataset ×

t-Tuple Frequency of t-tuples ✓

Longest Repeated Substring

(LRS)

Number of repeated substrings ✓

Multi Most Common in

Window Prediction

Number of correct predictions based on the most com-

mon value

✓

Lag Prediction Number of correct predictions based on periodicity ✓

MultiMMC Prediction Number of correct predictions based on multiple Markov

models

✓

LZ78Y Prediction Number of correct predictions based on a dictionary con-

structed using observed tuples

✓

3.1 Methodology

The goal of this study is to answer the following questions regarding the entropy

estimators introduced in SP 800-90B [32]:
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1. How closely do the entropy estimators match the true entropy of the source?

2. How correlated are the entropy estimators?

3. How do different deterministic transformations impact the entropy estimate?

4. How do IID-Assumption test results impact the entropy estimate?

3.1.1 Entropy Estimation using Known Distributions

One approach to understanding the accuracy of the entropy estimators is to simulate

various sequences with known probability distributions (hence, known entropy), and

check the difference between the estimated entropy and the true entropy. In cases

where certain entropy estimators consistently yield outlier results compared to others,

it is important to investigate the underlying reasons for such discrepancies. This could

involve examining the specific characteristics of the input data, inherent biases in the

estimation techniques, or the impacts of using different input lengths and sample

sizes.

3.1.2 Correlation of the Entropy Estimators

Understanding the correlation between different entropy estimators can provide in-

sights into the reliability, robustness, and limitations of the estimators for crypto-

graphic applications. One aspect to consider is the agreement between different en-

tropy estimation methods by assessing whether they tend to produce similar entropy

estimates for the same set of input sequences. This study employed correlation analy-

sis to quantify the relationship between pairs of entropy estimates and used the Pear-

son and Spearman correlation coefficients.

3.1.3 Impact of Deterministic Transformations

The noise source outputs are typically processed using deterministic conditioning

functions to reduce their statistical bias and improve their entropy rate (i.e., entropy

per bit). The impacts of a number of deterministic transformations that are applied to

the output sequence are of interest here.
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Let S = (s1, s2, . . . , sL) be a noise source output with length L, and let S ′ =

(s′1, s
′
2, . . . , s

′
L) be generated from S via a deterministic transformation. This study

uses the following transformations:

• Reverse: This transformation generates a new sequence by changing the order

of the sequence. The generated sequence S ′ = (sL, sL−1, . . . , s2, s1) is con-

structed with s′i = sL−i+1 for each i = 1, 2, . . . , L.

For example, the reversed sequence of S = (10110001110010) is

S ′ = (01001110001101).

• Binary Derivative: This transformation generates a new sequence by XORing

(i.e., modulo 2 addition) the consecutive bits of the sequence. The generated

sequence S ′ = (s′1, s
′
2, . . . , s

′
L) is constructed with

s′i =

si ⊕ si+1, i = 1, 2, . . . , L− 1,

s1, i = L.

For example, the binary derivative of S = (10110001110010) is

S ′ = (11010010010111).

• t-Rotation: This transformation applies a t-bit rotation to the input sequence,

i.e., t-bit rotation of the sequence S where S = (s1, s2, . . . , sL) is

S ′ = (st+1, st+2, . . . , sL, s1, s2, . . . , st), where t = 16, 64, 128, or 1024.

For example, 2-bit rotation of S = (10110001110010) is

S ′ = (11000111001010).

3.1.4 Entropy Estimation According to IID-Assumption Tests using Known

Distributions

To understand the effect of IID-Assumption tests on the entropy estimation, we simu-

late various sequences with known probability distributions (hence, known entropy),

and check the difference between the estimated entropy and the true entropy, when

estimations are done according to IID-Assumption tests results.

17



3.2 Experimental Results

3.2.1 Accuracy of Entropy Estimators

Simulated Datasets

The following datasets with known entropy were simulated for the experiments to

measure accuracy of entropy estimators:

1. Uniform distribution with full entropy. The datasets are generated using the

Cipher Block Chaining (CBC) mode of the block cipher Advanced Encryption

Standard (AES) [9]. Sequences are generated for three different sample sizes

(i.e., the size of the noise source output): binary, 4-bit, and 8-bit. For each

sample size, 1000 sequences of length 1 000 000 were generated. In these se-

quences, all outputs are assumed to have an equal probability of occurring, and

are independent. Hence, the outputs have full entropy.

2. Biased binary distribution with entropy=0.5. The dataset follows a biased

binary distribution, where the probability of observing a 1 is 0.7, and the prob-

ability of observing a 0 is 0.3. For each sample size, 1000 sequences of length

1 000 000 were generated. In these sequences, the expected entropy of a se-

quence is 0.5 per bit. This data is generated using the random number generator

Mersenne Twister (MT19937) in C++.

3. 4-bit near-uniform with entropy=0.5. This dataset follows a 4-bit near-uniform

distribution, where the probability of observing the template 0000 is 0.25, and

the probability of observing other 4-bit templates is 0.05. For each sample size,

1000 sequences of length 250 000 were generated. In these sequences, the ex-

pected entropy of a sequence is 0.5 per bit. This data is generated using the

random number generator in C++.

4. 8-bit near-uniform with entropy=0.5. This dataset follows an 8-bit near-

uniform distribution, where the probability of observing the template 00000000

is 0.06, and the probability of observing other 8-bit templates is 0.003686. For

each sample size, 1000 sequences of length 125 000 were generated. In these
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sequences, the expected entropy of a sequence is 0.5 per bit. This data is gen-

erated using the random number generator in C++.

Table 3.3 compares the actual and estimated entropy values for binary, 4-bit, and 8-bit

uniformly distributed data with full entropy. It shows that compression and collision

estimates produce the smallest estimates for binary data, which is consistent with the

findings of Zhu et al. [35] and Kim et al. [17].

Table 3.3: Mean and standard deviation of entropy estimators for binary, 4-bit, and
8-bit sources with full entropy

1-bit 4-bit 8-bit
Mean Std. Dev. Mean Mean/bit Std. Dev. Mean Mean/bit Std. Dev.

MCV 0.9951 0.0009 3.9514 0.9879 0.0056 7.6736 0.9592 0.0222
Collision 0.9141 0.0194 * * * * * *
Markov 0.9982 0.0011 * * * * * *

Compression 0.8535 0.0287 * * * * * *
t-Tuple 0.9294 0.0104 3.7799 0.9450 0.0149 7.6736 0.9592 0.0222

LRS 0.9785 0.0262 3.8928 0.9732 0.1131 7.7468 0.9683 0.1878
Multi MCW 0.9954 0.0114 3.9635 0.9909 0.0662 7.8169 0.9771 0.1315

Lag Prediction 0.9957 0.0072 3.9677 0.9919 0.0416 7.8116 0.9764 0.1679
MultiMMC 0.9951 0.0129 3.9616 0.9904 0.0778 7.8197 0.9775 0.1302

LZ78Y 0.9956 0.0096 3.9616 0.9904 0.0778 7.8198 0.9775 0.1302

The same experiments were repeated for biased binary distribution, 4-bit near-uniform

distribution, and 8-bit near-uniform distribution, and the results are summarized in

Table 3.4. Similar to uniform distribution, the compression estimate underestimates

entropy for biased distributions. However, LRS and lag prediction overestimate the

entropy by approximately 50%. Similar results were obtained for 4-bit and 8-bit sam-

ples.

Table 3.4: Mean and standard deviation of entropy estimators of datasets for biased
binary, 4-bit near-uniform, and 8-bit near-uniform distributions

Biased Binary Dist. 4-bit Near-uniform 8-bit Near-uniform
Mean Std. Dev. Mean Mean/bit Std. Dev. Mean Mean/bit Std. Dev.

MCV 0.5122 0.0009 1.9872 0.4968 0.0050 4.0169 0.5021 0.0160
Collision 0.5095 0.0020 * * * * * *
Markov 0.5146 0.0011 * * * * * *

Compression 0.3224 0.0009 * * * * * *
t-Tuple 0.5031 0.0116 1.9710 0.4928 0.0197 3.9993 0.4999 0.0380

LRS 0.7692 0.0205 3.2364 0.8091 0.0954 6.9466 0.8683 0.1884
Multi MCW 0.5121 0.0055 1.9860 0.4965 0.0200 4.0063 0.5008 0.0738

Lag Prediction 0.7756 0.0263 3.2812 0.8203 0.0923 6.9558 0.8695 0.2984
MultiMMC 0.5118 0.0055 1.9861 0.4965 0.0200 4.1557 0.5195 0.1028

LZ78Y 0.5118 0.0055 1.9860 0.4965 0.0200 4.1556 0.5194 0.1027
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Figures 3.1, 3.2 and 3.3 show the distribution of the entropy estimation for uniform

distribution with full entropy in binary, 4-bit and 8-bit representations. Compression

and LRS estimators seem to show high variation compared to other estimators.

Figure 3.1: Distribution of Entropy Estimations for Binary Uniform Distribution
Dataset
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Figure 3.2: Distribution of Entropy Estimations for 4-bit Uniform Distribution
Dataset
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Figure 3.3: Distribution of Entropy Estimations for 8-bit Uniform Distribution
Dataset
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3.2.2 Correlations of Estimators

The Pearson and Spearman coefficients were used to measure the correlation between

entropy estimators. To analyze correlation of the estimators mainly three different

datasets are used in experiments: IID-Full Entropy, IID-Low Entropy and Non-IID-

Low Entropy.

3.2.2.1 Correlation Analysis with Dataset 1: IID-Full Entropy

For these experiments, sequences that have uniform distribution with full entropy are

generated in different lengths. To generate these sequences Cipher Block Chaining

(CBC) mode of the block cipher Advanced Encryption Standard (AES) [9] is used.

For each length, 1 000 000, 8 000 000, and 32 000 000 bits, 200 binary sequences are

generated to construct datasets. In these sequences, all outputs are assumed to have an

equal probability of occurring, and are independent and identical. Hence, the outputs

have full entropy.

Using 200 binary sequences of length 1 000 000, Table 3.5 and Table 3.6 show the

Pearson and Spearman correlations among different estimators, respectively. Ac-

cording to Table 3.5, a strong or moderate correlation was observed for the (MCV,

Markov), (MultiMCW, MultiMMC) (MultiMMC, LZ78Y), and (MultiMCW, LZ78Y)

estimators using Pearson’s metric. When the same experiments were conducted using

Spearman’s metric, a correlation was still observed between (MCV, Markov). How-

ever, (MultiMMC, LZ78Y) and (MultiMCW, LZ78Y) correlations were no longer as

strong. Additionally, the correlation between (Markov, LZ78Y) was observed to be

strong for Spearman’s metric.

Table 3.5: Pearson correlation among different estimators for uniform distribution
with full entropy 1 000 000

MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 -0.0531 0.5338 -0.1170 0.0564 -0.0506 0.0535 -0.0745 0.2174 0.2610

Collision 1.0000 0.1315 -0.0092 0.0163 0.0563 0.0071 -0.0281 -0.0286 -0.0856
Markov 1.0000 0.0347 0.0821 -0.0158 0.0261 -0.0581 0.1767 0.2278

Compression 1.0000 -0.0422 0.0284 0.0281 -0.0011 0.1094 0.0756
t-Tuple 1.0000 0.0388 0.0444 0.0583 0.0760 0.0765

LRS 1.0000 -0.0449 0.0059 -0.0557 -0.0505
MultiMCW 1.0000 -0.0063 0.4702 0.8063

Lag Prediction 1.0000 -0.0363 -0.0281
MultiMMC 1.0000 0.4693

LZ78Y 1.0000
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Table 3.6: Spearman correlation among different estimators for uniform distribution
with full entropy 1 000 000

MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 -0.0426 0.5410 -0.1012 0.0636 -0.0317 -0.0601 0.0314 0.1825 0.4991

Collision 1.0000 0.1224 0.0282 0.0254 0.0035 0.0140 0.0009 0.0017 -0.1207
Markov 1.0000 0.0491 0.0954 -0.0215 -0.0454 0.0510 0.1784 0.6420

Compression 1.0000 0.0138 0.1014 0.0202 0.0200 0.1711 0.1143
t-Tuple 1.0000 0.0714 -0.0104 -0.0789 0.0316 0.0575

LRS 1.0000 0.0396 -0.0641 0.0187 0.0008
MultiMCW 1.0000 -0.0593 0.0784 -0.1028

Lag Prediction 1.0000 0.0178 0.1391
MultiMMC 1.0000 0.1982

LZ78Y 1.0000

To observe the effect of lengths of sequences on estimations, the same experiments

were repeated for the dataset containing binary sequences of lengths 8 000 000 and

32 000 000.

Table 3.7: Pearson correlation among different estimators for uniform distribution
with full entropy 8 000 000

MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 -0.0160 0.3343 -0.0555 0.1460 0.1293 0.0098 0.0315 0.0214 0.0680

Collision 1.0000 0.2238 -0.0835 0.0917 -0.0557 0.0650 0.0007 0.0433 0.0832
Markov 1.0000 -0.0476 0.0726 -0.0071 -0.1051 0.0386 -0.0178 0.0081

Compression 1.0000 0.0197 -0.0021 -0.0127 -0.0228 0.0042 0.0017
t-Tuple 1.0000 -0.0032 0.0425 0.0275 0.0664 0.1016

LRS 1.0000 -0.0047 0.0789 0.0231 0.0192
MultiMCW 1.0000 -0.0109 0.5500 0.7687

Lag Prediction 1.0000 -0.0108 -0.0122
MultiMMC 1.0000 0.7118

LZ78Y 1.0000

Table 3.8: Spearman correlation among different estimators for uniform distribution
with full entropy 8 000 000

MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 -0.0092 0.3450 -0.0659 0.0857 0.0821 0.0196 -0.0024 0.0706 0.4064

Collision 1.0000 0.2706 -0.0932 0.0568 -0.0140 0.1265 -0.0027 -0.0157 0.0125
Markov 1.0000 -0.0429 0.0238 0.0454 0.0389 -0.0027 0.1123 0.6106

Compression 1.0000 0.0114 0.0006 -0.0461 -0.0108 -0.0405 -0.0579
t-Tuple 1.0000 0.0321 -0.0927 -0.0706 0.0345 0.0993

LRS 1.0000 0.0638 0.1122 0.0429 0.0073
MultiMCW 1.0000 0.1930 0.0388 -0.0076

Lag Prediction 1.0000 -0.0254 -0.0492
MultiMMC 1.0000 0.1859

LZ78Y 1.0000

Table 3.9: Pearson correlation among different estimators for uniform distribution
with full entropy 32 000 000

MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 -0.1224 0.4393 -0.0279 -0.0736 0.0506 0.0639 -0.0673 0.0568 0.0209

Collision 1.0000 0.0124 0.0093 -0.0065 -0.0077 -0.2205 0.0820 0.0428 0.0258
Markov 1.0000 -0.0902 -0.0818 0.0311 0.0106 -0.0152 -0.0300 0.0001

Compression 1.0000 -0.0554 -0.0108 0.0170 -0.1724 -0.0933 -0.0132
t-Tuple 1.0000 0.0999 0.0355 0.0082 -0.0411 -0.1034
LRS 1.0000 0.0817 -0.0683 -0.0427 -0.0707

MultiMCW 1.0000 -0.0148 0.1119 0.1361
Lag Prediction 1.0000 -0.0087 -0.0097

MultiMMC 1.0000 0.3900
LZ78Y 1.0000
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Table 3.10: Spearman correlation among different estimators for uniform distribution
with full entropy 32 000 000

MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 -0.0898 0.3699 -0.0439 -0.0499 0.0501 0.0495 0.0115 0.1404 0.4301

Collision 1.0000 0.0980 -0.0553 0.0094 0.0765 0.1190 -0.0474 -0.1012 -0.1570
Markov 1.0000 -0.1085 -0.0427 0.0173 0.1167 0.0002 0.2001 0.6187

Compression 1.0000 0.0025 -0.0019 0.0593 0.0052 0.0558 -0.0178
t-Tuple 1.0000 0.0406 -0.0640 0.0304 0.0054 -0.0866

LRS 1.0000 0.0632 -0.0315 -0.0204 0.0290
MultiMCW 1.0000 0.0546 0.0963 0.1163

Lag Prediction 1.0000 0.0984 0.0236
MultiMMC 1.0000 0.3277

LZ78Y 1.0000

Experiments show that there is a moderate correlation between (MCV, Markov) ac-

cording to Pearson’s and also Spearman’s metric. When the length of sequences

increases to 8 million and 32 million, we observe a small decrease in correlation

coefficients of (MCV, Markov) compared to 1 million cases for each metric.

Similar to initial results, for sequences of length 8 million, a strong or moderate cor-

relation was observed for (MultiMCW, MultiMMC) (MultiMMC, LZ78Y) and (Mul-

tiMMC, LZ78Y) according to Pearson. But we repeat the same experiments with

sequences of length 32 million, Pearson correlations can be interrupted as low. Ac-

cording to Spearman’s metric, it was not observed considerable correlations between

these estimators.

For each case (1m, 8m, 32m) correlation between (Markov, LZ78Y) was observed to

be strong for Spearman’s metric.

Even if a small decrease in the correlation coefficients was observed when the exper-

iments were repeated, the general results of experiments are close to each other.

3.2.2.2 Correlation Analysis with Dataset 2: IID-Low Entropy

Experiments were repeated with biased datasets, to observe the relations of the esti-

mators when sequences have not full entropy. The following datasets were used for

the experiments, similarly Pearson and Spearman coefficients were used to measure

the correlation between entropy estimators. However, the number of highly corre-

lated estimators is seen as the result of experiments. To make accurate observations

Benjamini-Hochberg correction [5] applied to the P-values, p < 0.01 is assumed to
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be significant.

1. Biased binary distribution with entropy=0.5. The dataset follows a biased

binary distribution, where the probability of observing a 1 is 0.7, and the proba-

bility of observing a 0 is 0.3. 200 sequences of length 1 000 000 were generated.

In these sequences, the expected entropy of a sequence is 0.5 per bit. This data

is generated using the random number generator Mersenne Twister (MT19937)

in C++.

2. 4-bit near-uniform with entropy=0.5. This dataset follows a 4-bit near-uniform

distribution, where the probability of observing the template 0000 is 0.25, and

the probability of observing other 4-bit templates is 0.05. 200 sequences of

length 1 000 000 were generated. In these sequences, the expected entropy of

a sequence is 0.5 per bit. This data is generated using the random number

generator in C++.

3. 8-bit near-uniform with entropy=0.5. This dataset follows an 8-bit near-

uniform distribution, where the probability of observing the template 00000000

is 0.06, and the probability of observing other 8-bit templates is 0.003686. 200

sequences of length 1 000 000 were generated. In these sequences, the expected

entropy of a sequence is 0.5 per bit. This data is generated using the random

number generator in C++.

The Pearson and Spearman correlations of the estimators are given in the following

tables.

When we interpret Pearson correlation results of estimators for biased binary se-

quences, it was observed a strong correlation for (Markov, MCV), (Compression,

MCV) and (Markov, Collision). There was a moderate correlation between the pairs

(Collision, MCV) and (Compression, Markov).
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Table 3.11: Pearson correlation among different estimators for binary biased distri-
bution with 0.5 entropy

Pearson MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 0.4903 0.8381 0.7580 0.1988 0.0359 0.1706 0.2058 0.1718 0.1718

Collision 0.4903 1.0000 0.7173 0.2839 0.1616 0.0434 0.0599 0.1563 0.0612 0.0611
Markov 0.8381 0.7173 1.0000 0.5893 0.2238 0.0295 0.1551 0.1846 0.1561 0.1561

Compression 0.7580 0.2839 0.5893 1.0000 0.1558 0.0493 0.1396 0.1281 0.1403 0.1404
t-Tuple 0.1988 0.1616 0.2238 0.1558 1.0000 0.0882 0.1637 0.1478 0.1637 0.1636

LRS 0.0359 0.0434 0.0295 0.0493 0.0882 1.0000 0.3244 -0.0036 0.3241 0.3240
MultiMCW 0.1706 0.0599 0.1551 0.1396 0.1637 0.3244 1.0000 0.0114 1.0000 1.0000

Lag Prediction 0.2058 0.1563 0.1846 0.1281 0.1478 -0.0036 0.0114 1.0000 0.0115 0.0115
MultiMMC 0.1718 0.0612 0.1561 0.1403 0.1637 0.3241 1.0000 0.0115 1.0000 1.0000

LZ78Y 0.1718 0.0611 0.1561 0.1404 0.1636 0.3240 1.0000 0.0115 1.0000 1.0000

Table 3.12: P-values of Pearson correlation among different estimators for binary
biased distribution with 0.5 entropy

P-values MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 0.0000 0.0000 0.0000 0.0000 0.0120 0.6819 0.0327 0.0091 0.0326 0.0326

Collision 0.0000 0.0000 0.0000 0.0001 0.0397 0.6151 0.4754 0.0429 0.4754 0.4754
Markov 0.0000 0.0000 0.0000 0.0000 0.0040 0.7375 0.0429 0.0212 0.0429 0.0429

Compression 0.0000 0.0001 0.0000 0.0000 0.0429 0.5672 0.0658 0.0930 0.0658 0.0658
t-Tuple 0.0120 0.0397 0.0040 0.0429 0.0000 0.2745 0.0382 0.0540 0.0382 0.0382

LRS 0.6819 0.6151 0.7375 0.5672 0.2745 0.0000 0.0000 0.9599 0.0000 0.0000
MultiMCW 0.0327 0.4754 0.0429 0.0658 0.0382 0.0000 0.0000 0.8906 0.0000 0.0000

Lag Prediction 0.0091 0.0429 0.0212 0.0930 0.0540 0.9599 0.8906 0.0000 0.8906 0.8906
MultiMMC 0.0326 0.4754 0.0429 0.0658 0.0382 0.0000 0.0000 0.8906 0.0000 0.0000

LZ78Y 0.0326 0.4754 0.0429 0.0658 0.0382 0.0000 0.0000 0.8906 0.0000 0.0000

According to Spearman’s metric, there was a strong correlation between MCV and the

estimators Markov, Compression, MultiMCW, MultiMMC, and LZ78Y. Similarly, it

was observed that Compression is highly correlated with MultiMCW, MultiMMC,

and LZ78Y. As a result, mutual correlations of MultiMCW, MultiMMC, and LZ78Y

are very strong.

Table 3.13: Spearman correlation among different estimators for binary biased distri-
bution with 0.5 entropy

Spearman MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 0.4518 0.8213 0.7377 0.2808 0.1646 0.9479 0.5232 0.9482 0.9481

Collision 0.4518 1.0000 0.6964 0.2680 0.1991 0.0926 0.4152 0.2021 0.4154 0.4162
Markov 0.8213 0.6964 1.0000 0.5732 0.3325 0.1354 0.7795 0.4046 0.7796 0.7804

Compression 0.7377 0.2680 0.5732 1.0000 0.2381 0.1468 0.7174 0.3923 0.7177 0.7180
t-Tuple 0.2808 0.1991 0.3325 0.2381 1.0000 0.1299 0.3130 0.1604 0.3126 0.3134

LRS 0.1646 0.0926 0.1354 0.1468 0.1299 1.0000 0.1964 0.0569 0.1959 0.1954
MultiMCW 0.9479 0.4152 0.7795 0.7174 0.3130 0.1964 1.0000 0.4887 0.9997 0.9996

Lag Prediction 0.5232 0.2021 0.4046 0.3923 0.1604 0.0569 0.4887 1.0000 0.4889 0.4894
MultiMMC 0.9482 0.4154 0.7796 0.7177 0.3126 0.1959 0.9997 0.4889 1.0000 0.9999

LZ78Y 0.9481 0.4162 0.7804 0.7180 0.3134 0.1954 0.9996 0.4894 0.9999 1.0000
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Table 3.14: P-values of Spearman correlation among different estimators for binary
biased distribution with 0.5 entropy

P-values MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 0.0000 0.0000 0.0000 0.0000 0.0001 0.0225 0.0000 0.0000 0.0000 0.0000

Collision 0.0000 0.0000 0.0000 0.0002 0.0059 0.1963 0.0000 0.0053 0.0000 0.0000
Markov 0.0000 0.0000 0.0000 0.0000 0.0000 0.0595 0.0000 0.0000 0.0000 0.0000

Compression 0.0000 0.0002 0.0000 0.0000 0.0009 0.0413 0.0000 0.0000 0.0000 0.0000
t-Tuple 0.0001 0.0059 0.0000 0.0009 0.0000 0.0696 0.0000 0.0259 0.0000 0.0000

LRS 0.0225 0.1963 0.0595 0.0413 0.0696 0.0000 0.0065 0.4239 0.0065 0.0065
MultiMCW 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0000 0.0000 7.1427e-320 0.0000

Lag Prediction 0.0000 0.0053 0.0000 0.0000 0.0259 0.4239 0.0000 0.0000 0.0000 0.0000
MultiMMC Estimate 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 7.1427e-320 0.0000 0.0000 0.0000

LZ78Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0000 0.0000 0.0000 0.0000

When we interrupt Pearson correlation results of estimators for biased 4-bit sequences,

mutual correlations of MultiMCW, MultiMMC, and LZ78Y are very strong. Spear-

man’s metric verified the same results. In addition to them, MCV was highly corre-

lated with the same estimators MultiMCW, MultiMMC, and LZ78Y.

Table 3.15: Pearson correlation among different estimators for 4-bit biased distribu-
tion with 0.5 entropy

Pearson MCV t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 0.0812 -0.0688 0.1238 0.0485 0.1239 0.1237

t-Tuple 0.0812 1.0000 0.0094 0.0749 0.1581 0.0750 0.0748
LRS -0.0688 0.0094 1.0000 0.0051 0.0055 0.0054 0.0054

MultiMCW 0.1238 0.0749 0.0051 1.0000 -0.0147 1.0000 1.0000
Lag Prediction 0.0485 0.1581 0.0055 -0.0147 1.0000 -0.0145 -0.0146

MultiMMC 0.1239 0.0750 0.0054 1.0000 -0.0145 1.0000 1.0000
LZ78Y 0.1237 0.0748 0.0054 1.0000 -0.0146 1.0000 1.0000

Table 3.16: P-values of Pearson correlation among different estimators for 4-bit bi-
ased distribution with 0.5 entropy

P-values MCV t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 0.0000 0.4946 0.5265 0.1891 0.7356 0.1891 0.1891

t-Tuple 0.4946 0.0000 0.9431 0.4946 0.0828 0.4946 0.4946
LRS 0.5265 0.9431 0.0000 0.9431 0.9431 0.9431 0.9431

MultiMCW 0.1891 0.4946 0.9431 0.0000 0.9431 0.0000 0.0000
Lag Prediction 0.7356 0.0828 0.9431 0.9431 0.0000 0.9431 0.9431

MultiMMC 0.1891 0.4946 0.9431 0.0000 0.9431 0.0000 0.0000
LZ78Y 0.1891 0.4946 0.9431 0.0000 0.9431 0.0000 0.0000
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Table 3.17: Spearman correlation among different estimators for 4-bit biased distri-
bution with 0.5 entropy

Spearman MCV t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 0.1697 0.0458 0.9653 0.3198 0.9654 0.9653

t-Tuple 0.1697 1.0000 0.0903 0.1860 0.1352 0.1855 0.1848
LRS 0.0458 0.0903 1.0000 0.0469 -0.0114 0.0460 0.0456

MultiMCW 0.9653 0.1860 0.0469 1.0000 0.2888 0.9996 0.9996
Lag Prediction 0.3198 0.1352 -0.0114 0.2888 1.0000 0.2924 0.2913

MultiMMC 0.9654 0.1855 0.0460 0.9996 0.2924 1.0000 0.9999
LZ78Y 0.9653 0.1848 0.0456 0.9996 0.2913 0.9999 1.0000

Table 3.18: P-values of Spearman correlation among different estimators for 4-bit
biased distribution with 0.5 entropy

P-values MCV t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 0.0000 0.0228 0.5439 0.0000 0.0000 0.0000 0.0000

t-Tuple 0.0228 0.0000 0.2559 0.0131 0.0747 0.0131 0.0131
LRS 0.5439 0.2559 0.0000 0.5439 0.8732 0.5439 0.5439

MultiMCW 0.0000 0.0131 0.5439 0.0000 0.0001 0.0000 0.0000
Lag Prediction 0.0000 0.0747 0.8732 0.0001 0.0000 0.0001 0.0001

MultiMMC 0.0000 0.0131 0.5439 0.0000 0.0001 0.0000 0.0000
LZ78Y 0.0000 0.0131 0.5439 0.0000 0.0001 0.0000 0.0000

When we repeated the same experiments for biased 8-bit sequences, we got similar

results: mutual correlations of MultiMCW, MultiMMC, and LZ78Y are very strong.

Spearman’s metric verified the same results. In addition to them, MCV was highly

correlated with the same estimators MultiMCW, MultiMMC, and LZ78Y.

Table 3.19: Pearson correlation among different estimators for 8-bit biased distribu-
tion with 0.5 entropy

Pearson MCV t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 0.1181 -0.0853 0.1748 -0.0292 0.1693 0.1693

t-Tuple 0.1181 1.0000 0.0038 0.1512 0.2076 0.1507 0.1508
LRS -0.0853 0.0038 1.0000 -0.0316 0.0385 -0.0315 -0.0316

MultiMCW 0.1748 0.1512 -0.0316 1.0000 0.2497 1.0000 1.0000
Lag Prediction -0.0292 0.2076 0.0385 0.2497 1.0000 0.2507 0.2508

MultiMMC 0.1693 0.1507 -0.0315 1.0000 0.2507 1.0000 1.0000
LZ78Y 0.1693 0.1508 -0.0316 1.0000 0.2508 1.0000 1.0000
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Table 3.20: P-values of Pearson correlation among different estimators for 8-bit bi-
ased distribution with 0.5 entropy

P-values MCV t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 0.0000 0.1343 0.3040 0.0284 0.7104 0.0301 0.0301

t-Tuple 0.1343 0.0000 0.9574 0.0493 0.0074 0.0493 0.0493
LRS 0.3040 0.9574 0.0000 0.7104 0.7104 0.7104 0.7104

MultiMCW 0.0284 0.0493 0.7104 0.0000 0.0009 0.0000 0.0000
Lag Prediction 0.7104 0.0074 0.7104 0.0009 0.0000 0.0009 0.0009

MultiMMC 0.0301 0.0493 0.7104 0.0000 0.0009 0.0000 0.0000
LZ78Y 0.0301 0.0493 0.7104 0.0000 0.0009 0.0000 0.0000

Table 3.21: Spearman correlation among different estimators for 8-bit biased distri-
bution with 0.5 entropy

Spearman MCV t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 0.2834 0.0019 0.9511 0.0830 0.9506 0.9508

t-Tuple 0.2834 1.0000 0.1631 0.3001 0.0646 0.2931 0.2951
LRS 0.0019 0.1631 1.0000 -0.0006 0.0192 -0.0062 -0.0062

MultiMCW 0.9511 0.3001 -0.0006 1.0000 0.1037 0.9971 0.9972
Lag Prediction 0.0830 0.0646 0.0192 0.1037 1.0000 0.1091 0.1099

MultiMMC 0.9506 0.2931 -0.0062 0.9971 0.1091 1.0000 0.9999
LZ78Y 0.9508 0.2951 -0.0062 0.9972 0.1099 0.9999 1.0000

Table 3.22: P-values of Spearman correlation among different estimators for 8-bit
biased distribution with 0.5 entropy

P-values MCV t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 0.0000 0.0001 0.9937 0.0000 0.3213 0.0000 0.0000

t-Tuple 0.0001 0.0000 0.0355 0.0000 0.4562 0.0000 0.0000
LRS 0.9937 0.0355 0.0000 0.9937 0.9413 0.9937 0.9937

MultiMCW 0.0000 0.0000 0.9937 0.0000 0.2015 0.0000 0.0000
Lag Prediction 0.3213 0.4562 0.9413 0.2015 0.0000 0.1842 0.1842

MultiMMC 0.0000 0.0000 0.9937 0.0000 0.1842 0.0000 0.0000
LZ78Y 0.0000 0.0000 0.9937 0.0000 0.1842 0.0000 0.0000

3.2.2.3 Correlation Analysis with Dataset 3: Non-IID-Low Entropy

Experiments were repeated with simulated biased datasets to measure the relations

of the estimators when sequences do not satisfy the IID assumption and do have

not full entropy. The following sequences were used for the experiments, similarly

Pearson and Spearman coefficients were used to measure the correlation between

entropy estimators. To make accurate observations Benjamini-Hochberg correction

[5] applied to the P-values, p < 0.01 is assumed to be significant.
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• Non-IID binary distribution with entropy= Horg×0.875. The dataset follows

a biased binary distribution, where the elements of each sequence are gener-

ated as follows. Let S = (s1, s2, s3, · · · ) be a sequence of length 1 000 000, all

terms of the sequence are generated by the random number generator Mersenne

Twister (MT19937) in C++, however for each k, s8k =
∑7

i=1 s8k−i mod 2;

that is, 8kth element of the sequence is sum of previous seven elements in

mod 2. This modification reduces the entropy of the sequence in ratio
1

8
. The

sequences in this dataset do not satisfy the IID-assumption. This dataset con-

tains 200 binary sequences of length 1 000 000.

The Pearson and Spearman correlations of the estimators are given in the following

tables.

When we interpret Pearson correlation results of estimators for Non-IID biased binary

sequences, it was observed a moderate correlation for (Markov, MCV) and (Markov,

Collision).

Table 3.23: Pearson correlation among different estimators for Non-IID binary biased
distribution with low entropy

Pearson MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 0.1302 0.5724 0.0125 -0.0266 -0.0739 -0.0027 -0.0423 0.0388 0.0914

Collision 0.1302 1.0000 0.3226 -0.0709 -0.1126 0.0301 0.0758 0.0433 0.0588 0.1270
Markov 0.5724 0.3226 1.0000 -0.0179 -0.0955 -0.0272 -0.0570 -0.0686 0.0669 0.0753

Compression 0.0125 -0.0709 -0.0179 1.0000 0.1121 0.0403 0.1025 -0.1645 0.0325 -0.2527
t-Tuple -0.0266 -0.1126 -0.0955 0.1121 1.0000 -0.0661 0.0599 0.0920 -0.0497 -0.0597

LRS -0.0739 0.0301 -0.0272 0.0403 -0.0661 1.0000 0.0388 -0.0042 0.0545 -0.0459
MultiMCW -0.0027 0.0758 -0.0570 0.1025 0.0599 0.0388 1.0000 -0.0173 -0.0143 0.1074

Lag Prediction -0.0423 0.0433 -0.0686 -0.1645 0.0920 -0.0042 -0.0173 1.0000 -0.0051 0.0636
MultiMMC 0.0388 0.0588 0.0669 0.0325 -0.0497 0.0545 -0.0143 -0.0051 1.0000 -0.0166

LZ78Y 0.0914 0.1270 0.0753 -0.2527 -0.0597 -0.0459 0.1074 0.0636 -0.0166 1.0000

Table 3.24: P-values of Pearson correlation among different estimators for non-iid
binary biased distribution with low entropy

P-values MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 0.0000 0.3306 0.0000 0.9152 0.8437 0.7040 0.9697 0.7706 0.7706 0.5500

Collision 0.3306 0.0000 0.0000 0.7040 0.4381 0.8398 0.7040 0.7706 0.7040 0.3319
Markov 0.0000 0.0000 0.0000 0.9063 0.5500 0.8437 0.7040 0.7040 0.7040 0.7040

Compression 0.9152 0.7040 0.9063 0.0000 0.4381 0.7706 0.4959 0.1106 0.8308 0.0019
t-Tuple 0.8437 0.4381 0.5500 0.4381 0.0000 0.7040 0.7040 0.5500 0.7572 0.7040

LRS 0.7040 0.8398 0.8437 0.7706 0.7040 0.0000 0.7706 0.9697 0.7148 0.7706
MultiMCW 0.9697 0.7040 0.7040 0.4959 0.7040 0.7706 0.0000 0.9063 0.9137 0.4648

Lag Prediction 0.7706 0.7706 0.7040 0.1106 0.5500 0.9697 0.9063 0.0000 0.9697 0.7040
MultiMMC 0.7706 0.7040 0.7040 0.8308 0.7572 0.7148 0.9137 0.9697 0.0000 0.9063

LZ78Y 0.5500 0.3319 0.7040 0.0019 0.7040 0.7706 0.4648 0.7040 0.9063 0.0000

According to Spearman’s metric; similar to Pearson’s metric, there was a moderate

31



correlation for Markov and the MCV and Collision. Moreover, moderate correlations

for the pairs (LZ78Y, MCV) and (LZ78Y, Markov) were observed.

Table 3.25: Spearman correlation among different estimators for non-iid binary bi-
ased distribution with low entropy

Spearman MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 1.0000 0.1140 0.5207 -0.0430 -0.0384 -0.0699 -0.0408 -0.0129 0.1048 0.4727

Collision 0.1140 1.0000 0.2729 -0.0454 -0.0762 0.0617 0.1123 -0.0371 0.0660 0.0628
Markov 0.5207 0.2729 1.0000 -0.0465 -0.0938 -0.0354 -0.0291 -0.0590 0.0464 0.6870

Compression -0.0430 -0.0454 -0.0465 1.0000 0.1129 0.1117 0.0356 0.0456 0.0299 -0.0124
t-Tuple -0.0384 -0.0762 -0.0938 0.1129 1.0000 -0.0001 0.0929 0.0534 0.0578 -0.1132

LRS -0.0699 0.0617 -0.0354 0.1117 -0.0001 1.0000 -0.0109 -0.0237 0.0534 -0.0833
MultiMCW -0.0408 0.1123 -0.0291 0.0356 0.0929 -0.0109 1.0000 -0.0252 0.0505 0.1024

Lag Prediction -0.0129 -0.0371 -0.0590 0.0456 0.0534 -0.0237 -0.0252 1.0000 0.0036 -0.0633
MultiMMC 0.1048 0.0660 0.0464 0.0299 0.0578 0.0534 0.0505 0.0036 1.0000 0.0247

LZ78Y 0.4727 0.0628 0.6870 -0.0124 -0.1132 -0.0833 0.1024 -0.0633 0.0247 1.0000

Table 3.26: P-values of Spearman correlation among different estimators for non-iid
binary biased distribution with low entropy

P-values MCV Collision Markov Compression t-Tuple LRS MultiMCW Lag Prediction MultiMMC LZ78Y
MCV 0.0000 0.4121 0.0000 0.7738 0.7738 0.7696 0.7738 0.9145 0.4656 0.0000

Collision 0.4121 0.0000 0.0005 0.7696 0.7087 0.7696 0.4121 0.7738 0.7696 0.7696
Markov 0.0000 0.0005 0.0000 0.7696 0.5302 0.7738 0.8122 0.7696 0.7696 0.0000

Compression 0.7738 0.7696 0.7696 0.0000 0.4121 0.4121 0.7738 0.7696 0.8122 0.9145
t-Tuple 0.7738 0.7087 0.5302 0.4121 0.0000 0.9985 0.5302 0.7696 0.7696 0.4121

LRS 0.7696 0.7696 0.7738 0.4121 0.9985 0.0000 0.9145 0.8208 0.7696 0.6345
MultiMCW 0.7738 0.4121 0.8122 0.7738 0.5302 0.9145 0.0000 0.8208 0.7696 0.4659

Lag Prediction 0.9145 0.7738 0.7696 0.7696 0.7696 0.8208 0.8208 0.0000 0.9791 0.7696
MultiMMC 0.4656 0.7696 0.7696 0.8122 0.7696 0.7696 0.7696 0.9791 0.0000 0.8208

LZ78Y 0.0000 0.7696 0.0000 0.9145 0.4121 0.6345 0.4659 0.7696 0.8208 0.0000

3.2.3 Impact of the Transformations

For this experiment, 200 uniformly distributed sequences of length 1 000 000 with

full entropy were used. These sequences were transformed using a reversing, binary

derivative, and t-rotation for t = 16, 64, 128, 1024. Entropy estimates for the original

and transformed sequences were compared, and their Pearson and Spearman correla-

tion coefficients are listed in Table 3.27 and Table 3.28, respectively. Reversing and

rotating the input sequences did not have any impact on its entropy estimation for

the MCV, collision, Markov, t-tuple, and LRS estimators (hence, the same estimate

is obtained) for either of the correlation metrics. Among different transformations,

binary derivative seems to have the highest impact on the prediction-based estimates,

namely multiMCW, Lag, multiMMC, and LZ78Y.
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Table 3.27: Pearson Correlation according to the estimation results of transformed
sequences

Original Reversed Bin. Drv. 16-rot. 64-rot. 128-rot. 1024-rot.
MCV 1.0000 1.0000 -0.0289 1.0000 1.0000 1.0000 1.0000

Collision 1.0000 1.0000 -0.0160 1.0000 1.0000 1.0000 1.0000
Markov 1.0000 1.0000 0.4586 1.0000 1.0000 1.0000 1.0000

Compression 1.0000 0.3334 0.4887 0.3379 0.3374 0.3927 0.3368
t-Tuple 1.0000 1.0000 0.1144 1.0000 1.0000 1.0000 1.0000

LRS 1.0000 1.0000 0.7013 1.0000 1.0000 1.0000 1.0000
Multi MCW 1.0000 0.1301 0.8455 0.9999 0.9998 0.9997 0.9994

Lag Prediction 1.0000 0.1492 0.0037 0.9983 0.9971 0.9962 0.9915
MultiMMC 1.0000 0.0564 -0.0189 0.9977 0.9962 0.9962 0.8329

LZ78Y 1.0000 0.0598 0.1510 0.9961 0.9927 0.9918 0.9738

Table 3.28: Spearman Correlation according to the estimation results of transformed
sequences

Original Reversed Bin. Drv. 16-rot. 64-rot. 128-rot. 1024-rot.
MCV 1.0000 1.0000 -0.0432 1.0000 1.0000 1.0000 1.0000

Collision 1.0000 1.0000 0.0565 1.0000 1.0000 1.0000 1.0000
Markov 1.0000 1.0000 0.4030 1.0000 1.0000 1.0000 1.0000

Compression 1.0000 0.3090 0.5283 0.3053 0.3053 0.3685 0.3094
t-Tuple 1.0000 1.0000 0.0964 1.0000 1.0000 1.0000 1.0000

LRS 1.0000 1.0000 0.5425 1.0000 1.0000 1.0000 1.0000
Multi MCW 1.0000 0.8795 0.0170 0.9975 0.9954 0.9947 0.9869

Lag Prediction 1.0000 0.3607 -0.0282 0.9822 0.9717 0.9603 0.9219
MultiMMC 1.0000 0.3762 0.2872 0.9162 0.8772 0.8770 0.6943

LZ78Y 1.0000 0.6069 0.3580 0.9941 0.9884 0.9867 0.9530

3.2.4 Impact of the IID-Assumption Tests

For these experiments, the following datasets are used.

1. Uniform distribution with full entropy. The datasets are generated using the

Cipher Block Chaining (CBC) mode of the block cipher Advanced Encryption

Standard (AES) [9]. 200 binary sequences of length 1 000 000 were generated.

In these sequences, all outputs are assumed to have an equal probability of

occurring, and are independent. Hence, the outputs have full entropy.

2. Biased binary distribution with entropy=0.5. The dataset follows a biased

binary distribution, where the probability of observing a 1 is 0.7, and the prob-

ability of observing a 0 is 0.3. For each sample size, 200 sequences of length
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1 000 000 were generated. In these sequences, the expected entropy of a se-

quence is 0.5 per bit. This data is generated using the random number generator

Mersenne Twister (MT19937) in C++.

3. 4-bit near-uniform with entropy=0.5. This dataset follows a 4-bit near- uni-

form distribution, where the probability of observing the template 0000 is 0.25,

and the probability of observing other 4-bit templates is 0.05. For each sample

size, 200 sequences of length 250 000 were generated. In these sequences, the

expected entropy of a sequence is 0.5 per bit. This data is generated using the

random number generator in C++.

4. 8-bit near-uniform with entropy=0.5. This dataset follows an 8-bit near-

uniform distribution, where the probability of observing the template 00000000

is 0.06, and the probability of observing other 8-bit templates is 0.003686. For

each sample size, 200 sequences of length 125 000 were generated. In these

sequences, the expected entropy of a sequence is 0.5 per bit. This data is gen-

erated using the random number generator in C++.

5. Non-IID binary distribution with entropy= Horg×0.875. The dataset follows

a biased binary distribution, where the elements of each sequence are gener-

ated as follows. Let S = (s1, s2, s3, · · · ) be a sequence of length 1 000 000, all

terms of the sequence are generated by the random number generator Mersenne

Twister (MT19937) in C++, however for each k, s8k =
∑7

i=1 s8k−i mod 2;

that is, 8kth element of the sequence is sum of previous seven elements in

mod 2. This modification reduces the entropy of the sequence in ratio
1

8
. The

sequences in this dataset do not satisfy the IID-assumption. This dataset con-

tains 200 binary sequences of length 1 000 000.

For each dataset, IID-Assumption Tests and entropy estimators are employed. IID-

Assumption Test results (number of passes and number of fails) are listed in the fol-

lowing table.
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Table 3.29: IID-Assumption Test Results
AES CBC Biased Binary Biased 4-bit Biased 8-bit Non-IID Binary
Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail

Excursion Test Statistic 200 0 200 0 199 1 200 0 200 0
Number of Directional Runs 200 0 200 0 200 0 200 0 200 0
Length of Directional Runs 200 0 200 0 200 0 200 0 200 0

Number of Increases and Decreases 199 1 200 0 200 0 200 0 200 0
Number of Runs based on the Median 200 0 200 0 198 2 199 1 200 0

Length of Runs based on Median 200 0 199 1 200 0 200 0 200 0
Average Collision Test Statistic 200 0 200 0 200 0 199 1 200 0

Maximum Collision Test Statistic 200 0 200 0 200 0 200 0 200 0
Periodicity Test Statistic (1) 200 0 200 0 200 0 200 0 200 0
Periodicity Test Statistic (2) 200 0 200 0 199 1 200 0 200 0
Periodicity Test Statistic (8) 200 0 200 0 200 0 200 0 200 0

Periodicity Test Statistic (16) 199 1 199 1 200 0 199 1 200 0
Periodicity Test Statistic (32) 200 0 200 0 200 0 200 0 200 0
Covariance Test Statistic (1) 200 0 200 0 200 0 199 1 200 0
Covariance Test Statistic (2) 200 0 200 0 200 0 200 0 199 1
Covariance Test Statistic (8) 200 0 200 0 200 0 199 1 199 1

Covariance Test Statistic (16) 200 0 200 0 200 0 200 0 200 0
Covariance Test Statistic (32) 200 0 200 0 200 0 200 0 200 0

Compression Test Statistic 200 0 199 1 198 2 199 1 0 200
-Square Goodness of Fit 200 0 200 0 200 0 200 0 200 0
-Square Independence NA NA NA NA 198 2 200 0 NA NA
Length of the LRS Test 200 0 200 0 200 0 200 0 200 0

Almost all sequences of dataset Uniform distribution with full entropy generated by

AES-CBC mode pass IID-Assumption tests, and entropy estimations are done by

Most Common Value Estimate (IID-Track), as expected estimated entropy values are

close to 1 and mean of all estimations is 0.9952.

On the other hand, the sequences of biased datasets Biased binary distribution with

entropy=0.5, 4-bit near-uniform with entropy=0.5 and 8-bit near-uniform with en-

tropy=0.5 again pass IID-Assumption tests, for each dataset, elements are generated

identically and independent. Entropy estimations of these datasets again are done

via Most Common Value Estimate (IID-Track); estimations are close to the real en-

tropy value 0.5 per bit. The sequences of the dataset Non-IID binary distribution with

entropy= Horg × 0.875 cannot pass IID-Assumption tests, compression test statistic

detects these sequences. Entropy estimation is done via Non-IID track. Table 3.30

shows the mean and standard deviations of the entropy estimation results.
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Table 3.30: Entropy Estimation Results of IID sequences
AES CBC Biased Binary (H=0.5) Biased 4-bit (H=0.5) Biased 8-bit (H=0.5)

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
MCV 0.9952 0.0008 0.5121 0.0009 1.9935 0.0026 4.0442 0.0059

Collision 0.9107 0.0172 0.5095 0.0020 * * * *
Markov 0.9982 0.0012 0.5145 0.0011 * * * *

Compression 0.8496 0.0247 0.3224 0.0009 * * * *
t-Tuple 0.9282 0.0107 0.5038 0.0103 1.9783 0.0171 4.0320 0.0161

LRS 0.9825 0.0195 0.7701 0.0178 3.2575 0.0746 7.0289 0.1735
MultiMCW 0.9961 0.0016 0.5120 0.0052 1.9925 0.0131 4.0363 0.0493

Lag Prediction 0.9960 0.0024 0.7765 0.0234 3.2927 0.0954 6.9225 0.3061
MultiMMC 0.9953 0.0088 0.5117 0.0052 1.9925 0.0131 4.0540 0.0527

LZ78Y 0.9960 0.0019 0.5117 0.0052 1.9925 0.0131 4.0540 0.0527

The sequences in the last dataset Non-IID binary distribution cannot pass the IID-

Assumption tests, so the entropy estimation is done via Non-IID track. Because of

generation method of the dataset for each k, 8kth element of the sequence is the

sum of previous seven elements in mod 2, the expected entropy of the sequence is

approximately Horiginal×0.875, assuming original entropy of the sequence generated

by using the random number generator Mersenne Twister (MT19937) in C++ is close

to 1, then expected entropy estimation is close to 0.875. Collision estimate gives the

minimum estimation for this data set, again we observe an underestimation because

of Collision.

Table 3.31: Entropy Estimation Results of Non-IID sequences
Non-iid (H=0.875)
Mean Std.Dev.

MCV 0.9950 0.0009
Collision 0.8061 0.0073
Markov 0.9980 0.0013

Compression 0.8508 0.0248
t-Tuple 0.8807 0.0122

LRS 0.9477 0.0266
MultiMCW 0.9968 0.0171

Lag Prediction 0.9956 0.0064
MultiMMC 0.8278 0.0052

LZ78Y 0.9947 0.0084
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3.3 Discussion

In this chapter of the thesis, we studied the black-box entropy estimators described in

NIST SP 800-90B. We observed that compression and collision estimates both under-

estimate the entropy for uniform and biased distributions, which is consistent with the

findings of Zhu et al. [35] and Kim et al. [17]. The remaining estimates are close to

the true entropy for the uniform distribution. However, LRS and lag prediction over-

estimate entropy for binary, 4-bit, and 8-bit sequences for biased distributions. Un-

derstanding the reasons for this gap based on the details of the estimators is planned

for future work.

These experiments show a strong correlation between the Markov and MCV tests

for uniform distribution. For uniform distribution, experiments were repeated for

sequences of different lengths. Even if a small decrease in the correlation coefficients

was observed when the experiments were repeated, the general results of experiments

are close to each other.

When correlation analysis was conducted with biased datasets satisfying IID- as-

sumption, there was an increase in correlation amounts and also the number of corre-

lated estimators. Experiments showed that mutual correlations of MultiMCW, Multi-

MMC, and LZ78Y are very strong. In addition to them, MCV was highly correlated

with the estimators MCV and the estimators Markov, Compression, MultiMCW, Mul-

tiMMC, and LZ78Y. On the other hand, when we interpret correlation results of esti-

mators for biased datasets not satisfying IID-Assumption, it was observed a moderate

correlation between pairs (Markov, MCV) and (Markov, Collision). Moreover, mod-

erate correlations for the pairs (LZ78Y, MCV) and (LZ78Y, Markov) were observed.

Additionally, we observed that taking binary derivation significantly changes the en-

tropy estimates, especially for prediction-based estimators.
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CHAPTER 4

ESTIMATING ENTROPY VIA INDEX-VALUE COINCIDENCE

In this chapter, a new entropy estimator called index-value coincidence estimate is

introduced in detail. We provide mathematical background, some applications, ex-

perimental results, and comparisons to demonstrate the effectiveness of the estimator.

4.1 Index-Value Coincidence Estimator

This section provides the details of the theoretical background and the description

of the index-value coincidence estimator. Let S = (s1, s2, . . . , sL) be a sequence

generated by a TRNGs, where si ∈ A = {x1, x2, . . . , xk}. The estimator assigns the

values from the alphabet set A to the sequence S and checks the number of times the

assignment is the same as the corresponding value of the sequence. The assignment

is done as follows: s1 ↔ x1, s2 ↔ x2, . . . , si ↔ xi ans so on. If si = xi for any

i, this is called i-index-value coincidence point. After an i-index-value coincidence

point, labeling restarts from x1. If there are no correct assignments for all k values,

the endpoint is called exhausting point (EP). In that case, the assignment starts over

from x1. Index-value coincidence points and exhausting points of the sequence are

called terminal points.

Example. Let S = (3, 7, 6, 5, 2, 1, 4, 7, 3, 2, 2, 3, 3, 1, 8, 2) be a sequence of length 16

formed by the elements in A = {1, 2, 3, 4, 5, 6, 7, 8}. The index-value coincidence

and exhaustive points of S are shown in the following table. As shown in Table 4.1,

there is no coincidence in the values of si’s and xi’s (i.e., si ̸= xi) for the first k = 8

terms, hence i = 8 is an exhausting point. Then, starting from i = 9, the labeling
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restarts from 1, and we see that s10 is a 2-index-value coincidence point. Similarly,

labeling starts from 1 after each terminal point, s13 is a 3-index-value coincidence

point and s16 is a 2-index-value coincidence point.

Table 4.1: Example demonstration of index-value coincidences
i si xi Index-coincidence EP? i si xi Index-coincidence EP?
1 3 1 no - 9 3 1 no -
2 7 2 no - 10 2 2 yes -
3 6 3 no - 11 2 1 no -
4 5 4 no - 12 3 2 no -
5 2 5 no - 13 3 3 yes -
6 1 6 no - 14 1 1 yes -
7 4 7 no - 15 8 1 no -
8 7 8 no yes 16 2 2 yes -

4.1.1 Estimating the Probability Distribution

Let X be the random variable taking values from the set A = {x1, x2, . . . , xk} with

probabilities P (X = xi) = pi, where pi is the probability of X taking the value xi. To

compute the theoretical probabilities of index-value coincides and exhausting points,

the following probabilities are defined:

Probability Definition

T (n) the probability that nth element of the input sequence

S is a terminal point (i.e., index-value coincidence or

an exhausting point)

Ti(n) the probability that nth element of the input sequence

S is an i-index-value coincidence point.

TE.P.(n) the probability that nth element of the input sequence

S is an exhausting point.

40



The following equation provides a recurrence relation for T (n):

T (n) = T1(n) + T2(n) + · · ·+ Tk(n) + TE.P.(n)

= T (n− 1)p1 + T (n− 2)(1− p1)p2 + · · ·

+T (n− k)(1− p1)(1− p2) · · · (1− pk − 1)pk +

+T (n− k)(1− p1)(1− p2) · · · (1− pk−1)(1− pk)

Note that this recursion assumes that sample values are independently selected. The

characteristic equation of this recurrence relation is

λk − p1λ
k−1 − (1− p1)p2λ

k−2 − (1− p1)(1− p2)p3λ
k−3

− · · · − (1− p1)(1− p2) · · · (1− pk−1)pk

−(1− p1)(1− p2) · · · (1− pk−1)(1− pk) = 0

which has k solutions such that λ1 = 1 and for i = 2, 3, . . . , k, λi ∈ C, |λi| < 1. The

general formula for T (n) is

T (n) = C1λ
n
1 + C2λ

n
2 + C3λ

n
3 + · · ·+ Ckλ

n
k

where λ1 = 1 and for i = 2, 3, . . . , k, λi ∈ C, |λi| < 1 Ci ∈ R. Since for i =

2, 3, . . . , k we have |λi| < 1 for sufficiently large n, we have

lim
n→∞

T (n) = lim
n→∞

(
C1 + C2λ

n
2 + C3λ

n
3 + · · ·+ Ckλ

n
k

)
= C1

Given the sequence S = (s1, s2, . . . , sL) where si ∈ A = {x1, x2, . . . , xk} for each

i ∈ {1, 2, . . . , k}. Let ti be the number of index-value coincidence for each xi, and

tE.P. = t0 be the number of exhausting points where there is no index-value coinci-

dence over the entire alphabet set {x1, x2, . . . , xk} correspondence with the sequence.

The number of total probable situations can be evaluated with

t =
k∑

i=0

ti .

Following,

T (n) = C1 + C2λ
n
2 + C3λ

n
3 + · · ·+ Ckλ

n
k

≈ C1

≈ t0
t
+

t1
t
+ · · ·+ tk

t
,
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the expected values of ti’s i.e., the number of index-value coincidence for each xi can

be evaluated as follows:

E(t1) = tp1 (4.1)

E(t2) = t(1− p1)p2 (4.2)

E(tk) = t(1− p1)(1− p2) · · · (1− pk−1)pk (4.3)

These equations allow us to compute the entire probability distribution

P = {p1, p2, . . . , pk} of the set A = {x1, x2, . . . , xk} as

p1 =
t1
t

(4.4)

p2 =
t2

t(1− p1)
(4.5)

. . . (4.6)

pk =
tk

t(1− p1) · · · (1− pk−1)
(4.7)

4.1.2 Description of the Index-Value Coincidence Estimator

For a given sequence S = (s1, s2, . . . , sL), where si ∈ A = {x1, x2, . . . , xk}, the test

procedure can be summarized as follows:

1. Determine the number of i-index-value coincidence, denoted O(ti), and ex-

hausting points, denoted O(tE.P.) = O(t0).

2. By using observed values of ti s and tE.P. = t0 compute the estimated probabil-

ity distribution Q = {q1, q2, . . . , qk} of the elements of A = {x1, x2, . . . , xk}.

t =
k∑

i=0

O(ti)

For any i, O(ti) ̸= t, and O(t0) ̸= t

O(t1) = tq1 =⇒ q1 =
O(t1)

t

O(t2) = t(1− q1)p2 =⇒ q2 =
O(t2)

t(1− q1)
...

O(tk) = t(1− q1)(1− q2) · · · (1− qk−1)qk =⇒ qk =
O(tk)

t(1− q1) · · · (1− qk−1)
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3. For each i, evaluate pi =
qi

q1 + q2 + · · ·+ qk
.

4. Evaluate the min-entropy of the generator as H∞ = − log(maxi pi).

Since this method gives estimated probabilities of all elements of the alphabet set, it

can be used to estimate different types of entropy measures. In this study, we focused

on the min-entropy as also done in SP 800-90B.

Example 4.1.1. Let S = (0110010100100011) be a binary sequence of length 16

formed by the elements in A = {0, 1}. Then direct assignment in A to the elements of

the sequence gives the index-value coincidences as follows:

Table 4.3: Example index-value coincidences values for a binary sequence
Sequence 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1

Index 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1

The observed values of index-value coincidences and exhausting points are

O(t0) = 6, O(t1) = 2, O(tE.P.) = 3.

The total number of terminal points is t = O(tE.P.)+O(t0)+O(t1) = 3+6+6 = 11

then

q0 =
O(t0)

t
=

6

11
= 0.5454

and

q1 =
O(t1)

t(1− q1)
=

2

11(1− 0.5454)
= 0.3999

. Estimated probabilities are evaluated as

p0 =
0.5454

0.5454 + 0.3999
= 0.5770

p1 =
0.3999

0.5454 + 0.3999
= 0.4230
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Estimated probability distribution of the set A = {0, 1}, can be calculated as P =

{p1 = 0.5770, p2 = 0.4230} and the min-entropy estimation is

Hmin = − log(0.5770) = 0.7935

and the Shannon entropy is

H = −0.5770 log(0.5770)− 0.4230 log(0.42300) = 0.9829

.

4.2 Experimental Results

For the following experiments estimators specified in NIST SP 800-90B and the

index-value coincidence estimator are applied to the following simulated data sets:

Uniform distribution with full entropy. The dataset contains 100 sequences of

length 1 000 000, each sequence is generated by using Cipher Block Chaining (CBC)

mode of the block cipher Advanced Encryption Standard (AES) [9]. Required input

sequences are generated by using the generators "std: :random_device" and "std:

:mt19937" of the standard library "random" in C++. The outputs are assumed to

have full entropy. (This dataset is tested as in original binary representation and in

4-bit representation.)

Biased binary distribution with entropy=0.5. The dataset contains 100 sequences

of length 1 000 000, and each sequence has a biased binary distribution with the prob-

abilities of observing a 1 is 0.7 and observing a 0 is 0.3. The expected entropy of a

sequence is evaluated as 0.5 per bit.

4-bit near-uniform with entropy=0.5. The dataset contains 100 sequences of length

1 000 000, each sequence has a 4-bit near-uniform distribution with the probabilities

of observing the template 0000 is 0.25, and observing other 4-bit templates is 0.05.

The expected entropy of a sequence is evaluated as 0.5 per bit.

8-bit near-uniform with entropy=0.5. The dataset contains 100 sequences of length

1 000 000, each sequence has an 8-bit near-uniform distribution with the probabili-
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ties of observing the template 00000000 is 0.06, observing other 8-bit templates is

0.003686. The expected entropy of a sequence is evaluated as 0.5 per bit.

4.2.1 Comparison for min-entropy: Index-Value vs. NIST SP 800-90B Estima-

tors

To measure the accuracy of index-value coincidence estimator, entropy estimations

are calculated for all simulated datasets and min-entropy estimations compared with

the estimators in NIST SP 800-90B. Results are given in the following tables:

Table 4.4: Mean and standard deviation of min-entropy estimators for uniform distri-
butions: binary with full entropy, and 4-bit with full entropy sources

Binary Full Entropy 4-bit Full Entropy
Mean Std. Dev. Mean Mean/Bit Std. Dev.

MCV 0.9951 0.0010 3.9520 0.9880 0.0050
Collision 0.9142 0.0194 * * *
Markov 0.9982 0.0011 * * *

Compression 0.8498 0.0277 * * *
t-Tuple 0.9278 0.0099 3.7819 0.9455 0.0145

LRS 0.9852 0.0163 3.8967 0.9742 0.0909
Multi MCW 0.9954 0.0056 3.9566 0.9892 0.0832

Lag Prediction 0.9961 0.0020 3.9663 0.9916 0.0494
Multi MMC 0.9953 0.0088 3.9466 0.9866 0.1229

LZ78Y 0.9956 0.0088 3.9467 0.9867 0.1229
Index-Value 0.9988 0.0010 3.9193 0.9798 0.0197

Table 4.5: Mean and standard deviation of min-entropy estimators for biased distri-
butions: binary with 0.5 entropy, 4-bit with 0.5 entropy, and 8-bit with 0.5 entropy
sources

Binary 0.5 Entropy 4-bit 0.5 Entropy 8-bit 0.5 Entropy
Mean Std. Dev. Mean Mean/Bit Std. Dev. Mean Mean/Bit Std. Dev.

MCV 0.5122 0.0009 2.0448 0.5112 0.0054 4.0737 0.5092 0.0184
Collision 0.5095 0.0021 * * * * * *
Markov 0.5145 0.0012 * * * * * *

Compression 0.3225 0.0009 * * * * * *
t-Tuple 0.5038 0.0091 2.0240 0.5060 0.0262 4.0524 0.5065 0.0512

LRS 0.7718 0.0159 3.0712 0.7678 0.0836 6.1378 0.7672 0.1212
Multi MCW 0.5116 0.0073 2.0411 0.5103 0.0339 4.0657 0.5082 0.0873

Lag Prediction 0.7764 0.0244 3.1145 0.7786 0.0468 6.0944 0.7618 0.1504
Multi MMC 0.5113 0.0073 2.0408 0.5102 0.0338 4.1875 0.5234 0.1137

LZ78Y 0.5113 0.0073 2.0408 0.5102 0.0339 4.1915 0.5239 0.1147
Index-Value 0.5146 0.0009 2.0580 0.5145 0.0203 4.1836 0.5230 0.3356
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The results of these experiments show that the index-value coincidence estimate gives

accurate min-entropy estimates for simulated data sets.

4.2.2 Comparison for Shannon-entropy: Index-Value vs. NIST SP 800-90B Es-

timators

NIST SP 800-90B estimators give only min-entropy estimations for the noise source;

on the other hand, the index-value coincidence estimator estimates the all-probability

distribution, so this estimator gives min-entropy and also Shannon entropy estimates.

To make a meaningful comparison about Shannon entropy estimations binary datasets

are used for experiments.

NIST SP 800-90B estimators give estimation results as Hmin = − log2(max1≤i≤n pi).

For alphabet set A = {0, 1}, solving the equation Hmin = − log2(max1≤i≤n pi) for

pmax and calculating the probability of the second element of the alphabet set as

1 − pmax, it is possible to calculate Shannon entropy estimations. (However, for an

alphabet set containing more than two elements, it is not possible to calculate Shan-

non entropy for given inputs.)

To Compare Shannon entropy estimations of index-value coincidence estimator and

NIST SP 800-90B estimators, datasets with uniform distribution with full entropy

and biased binary distribution are used. Each dataset contains 100 binary sequence

of length 1 million. For the dataset uniform distribution with full entropy, the prob-

abilities of observing a 0 or 1 are equal and 0.5 for each sequence. The expected

Shannon entropy is 1. For the dataset biased binary distribution, probability of ob-

serving a 1 is 0.7 and observing a 0 is 0.3. Shannon entropy is calculated as 0.881291.

Entropy estimations are calculated for simulated datasets and Shannon-entropy esti-

mations are compared. Results are given in the following table:
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Table 4.6: Mean and standard deviation of Shannon-entropy estimations for uniform
binary distribution with full entropy, and biased binary distribution sources

Binary Full Entropy Biased Binary
Mean Std.Dev. Mean Std.Dev.

MCV 0.999991 3.81E-06 0.879870 0.000564
Collision 0.997134 1.17E-03 0.878244 0.001257
Markov 0.999998 1.83E-06 0.881270 0.000691

Compression 0.990954 2.92E-03 0.722566 0.001017
t-Tuple 0.998061 5.29E-04 0.874711 0.005719

LRS 0.999827 3.85E-04 0.978573 0.003604
Multi MCW 0.999981 1.10E-04 0.879462 0.004949

Lag Prediction 0.999993 1.07E-05 0.979278 0.006603
Multi MMC 0.999964 3.01E-04 0.879304 0.004931

LZ78Y 0.999965 3.01E-04 0.879304 0.004931
Index-Value 0.999999 1.17E-06 0.881304 0.000556

Expected Ent 1.000000 0.881291

The results of these experiments show that the index-value coincidence estimate gives

more accurate Shannon-entropy estimates compared to NIST SP 800-90B estimators.

For these datasets, Most Common Value and Markov estimate results are close to the

expected Shannon entropy estimation ın the test suite.

4.2.3 Correlation of Estimators

To measure the mutual correlation of the index-value coincidence estimator with es-

timators of NIST SP 800-90B Pearson and Spearman correlation coefficients are cal-

culated for the dataset uniform binary distribution with full entropy.

Table 4.7: Pearson correlation among index-value coincidence and NIST SP 800-90B
estimators for uniform binary distribution with full entropy

MCV Collis. Markov Compre. t-Tuple LRS MMCW Lag MMMC LZ78Y Ind-Val
MCV 1.0000 0.0471 0.5167 -0.0976 -0.0517 -0.0501 -0.0350 0.0449 0.0395 0.3650 0.4502
Collis. 1.0000 0.2706 0.0375 -0.0667 0.0632 0.0744 0.0457 0.1012 -0.1231 0.2211

Markov 1.0000 -0.0760 -0.0975 0.0677 -0.1014 0.0216 -0.0269 0.4700 0.6300
Compre. 1.0000 -0.0040 -0.0496 0.1961 0.0777 -0.0077 -0.0266 -0.0925
t-Tuple 1.0000 -0.0149 -0.0053 -0.0024 0.1870 -0.0121 -0.0035

LRS 1.0000 -0.0389 0.1072 -0.0546 -0.0278 -0.0871
MMCW 1.0000 0.0223 -0.2226 -0.1082 -0.0473

Lag 1.0000 0.0435 -0.0257 -0.0966
MMMC 1.0000 0.0084 0.0342
LZ78Y 1.0000 0.2502
Ind-Val 1.0000
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Table 4.8: Spearman correlation among index-value coincidence and NIST SP 800-
90B estimators for uniform binary distribution with full entropy

MCV Collision Markov Compre. t-Tuple LRS MMCW Lag MMMC LZ78Y Ind-Val
MCV 1.0000 0.0900 0.5248 -0.1229 -0.0919 -0.0156 -0.0564 -0.0179 0.1291 0.5149 0.3689
Collis. 1.0000 0.2396 0.0414 -0.0604 -0.0230 0.0761 0.0858 -0.0479 -0.0576 0.3020

Markov 1.0000 -0.0771 -0.0995 0.0171 -0.1282 0.0519 0.1798 0.7746 0.4817
Compre. 1.0000 0.0406 -0.1212 0.1527 0.0167 -0.0687 -0.0228 -0.0306
t-Tuple 1.0000 0.0790 -0.0108 -0.0313 0.0558 -0.0934 -0.0264

LRS 1.0000 -0.0167 -0.1029 -0.0331 -0.0609 -0.0589
MMCW 1.0000 -0.0340 -0.3049 -0.1692 0.0252

Lag 1.0000 0.0439 0.0270 -0.1206
MMMC 1.0000 0.2775 0.1876
LZ78Y 1.0000 0.3142
Ind-Val 1.0000

According to Pearson and Spearman correlations, there is a moderate correlation be-

tween (Index-Value, Markov). Also, it is observed that mutual correlations of index-

value and most common value estimates can be accepted as moderate according to

Pearson’s metric. Mutual correlation of index-value coincidence with other estima-

tios are low and can be ignored.

Experiments and correlation analysis results show that index-value coincidence is a

good alternative for estimating the entropy of non-binary sequences instead of the

Markov estimate, which is suitable for just binary inputs.

We focus on the black-box statistical entropy estimation of TRNGs and propose an

index-value coincidence estimate with its statistical and mathematical background.

Experimental results show that index-value coincidence estimate gives expected and

accurate entropy estimations for simulated datasets. We provided some experimen-

tal comparisons and correlation analysis with the estimators specified in NIST SP

800-90B, and results show that index-value coincidence estimates may be included

in the existing estimators to increase the number of estimators and the accuracy of

results. Moreover, contrary to existing estimators, index-value coincidence estimate

gives Shannon-entropy, similarly Shannon entropy estimates of index-value coinci-

dence and NIST SP 800-90B estimators are compared, and it is clearly observed that

index-value coincidence give more accurate estimations for Shannon entropy.
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CHAPTER 5

HEALTH TESTS FOR CRYPTOGRAPHIC RANDOM

NUMBER GENERATORS

In this chapter, existing health test suites are examined and a health test suite for

cryptographic TRNGs is introduced by using random variables weight, run, runs of

length 1 and overlapping templates, some suggested parameters and experimental

results are given.

True random number generators are hardware mechanisms that generate random num-

ber sequences from some physical events. In the operating process of mechanical

devices, the process may be affected by outside conditions such as humidity, tem-

perature, pressure, etc. These effects also may change the conditions of the physical

events that are employed as noise sources of the device. To detect unexpected devia-

tions in the working process of a TRNG, health tests are designed as components of

their structures.

Health tests are designed to detect corruption and error in the working mechanism

of the entropy source and give warnings about disruptions in the process, simultane-

ously. For this reason, tests should be designed as algorithms that provide fast results

and have low time complexity. NIST SP 800-90B[32] and FIPS PUB 140-2 [19]

recommend some health tests and describe testing process. Based on statistical ran-

domness tests found in the literature, it is possible to define health tests to be used for

these purposes. In this study, by using random variables weight, run, runs of length 1

and overlapping templates we introduce a health test suite for cryptographic random

number generators.
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5.1 Details of Existing Health Test Suites

There are some standards and guidelines for randomness, they provide designing prin-

ciples of a RNG, statistical randomness test, entropy estimation methods and health

tests. NIST SP 800-90B[32] and FIPS PUB 140-2 [19] describe health tests for

RNGs.

NIST SP 800-90B Recommendation for the Entropy Sources Used for Random Bit

Generation[32] gives a guideline for requirements of health tests and provides two

approved health tests Repetition Count test, and the Adaptive Proportion test.

1. Repetition Count Test: This test detects failures that cause the noise source to

generate the same output value for a long period of time.

2. Adaptive Proportion Test: This test detects a large loss of entropy that might

occur as a result of some physical or environmental changes. Adaptive pro-

portion test determines if the sample occurs too frequently by measuring the

frequency of a sample value in a sequence of noise source outputs.

FIPS PUB 140-2 Security Requirements for Cryptographic Modules[19] describes

statistical random number generator tests, for a cryptographic module employing

RNG. Consecutive 20, 000 bits of output of RNG are tested by the following tests:

1. Monobit Test: X is defined as the weight of the sequence of length 20, 000. If

9, 725 < X < 10, 275 holds, then the test is passed.

2. The Poker Test: The sequence of length 20, 000 is divided into 4-bit non-

overlapping subsequences. The number of all possible 4-bit templates is 16.

For each 4-bit template, let f(i) denote the number of the i template in the

sequence for 0 ≤ i ≤ 15. Evaluate

X =
16

5000
(

15∑
i=0

[f(i)]2)− 5000
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If 2.16 < X < 46.17 holds, the test is passed.

3. The Runs Test: A run is a maximal sequence of consecutive identical bits. For

this tests, numbers of runs of the sequence of length 20, 000 are counted and

stored according to their lengths. The test is passed, if the numbers of runs are

in the required intervals:

Length of Run Required Interval
1 2,343-2,657
2 1,135-1,365
3 542-708
4 251-373
5 111-201

6+ 111-201

4. The Long Run Test: A run of length 26 or more is defined as long run. The

test is passed if there is no long run of sequence.

These tests are examined, and to increase the number of tests in the health test suite,

mathematical and statistical backgrounds of tests and random variables are analyzed

in detail.

5.2 Proposed Health Tests

By preserving similar evaluation frameworks with existing methods, a basic mathe-

matical model of a health test suite is constructed with some selected random vari-

ables. The health test suite is created to ensure that the entropy of the random bit

generator remains below the expected level during the operation and to detect prob-

lems and faulty (mechanical or software) processes that may occur in the mechanism.

The basic evaluation principle of the defined health test suite is to detect the sub-

sequences that are at the extreme limits in the distribution functions of the selected

random variables and to keep them under control.

Motivation: Let Ωn be the set of all binary sequences of length n, and X be a random

variable, defined as X : Ωn → T where T is a finite subset of non-negative integers.
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Assume that the probability distribution function of X is as follows.

Figure 5.1: Probability Distribution of Random Variable X

For a binary sequence S ∈ Ωn, let X(S) = k. For a specified significant level α, if

Pr(X = k) ∈ (0, α
2
) or Pr(X = k) ∈ (1 − α

2
, 1); that is, k ∈ I = (x1, x2), the

sequence S is considered at the extreme limits in the probability distribution function

of the random variable X .

This test suite is designed to detect such subsequences of the output of RNG, at the

extreme limits in the probability distribution functions of the random variables weight,

run, runs of length 1 and overlapping templates. For each random variable, according

to their probability distribution functions and the significance level of the statistical

test suite, valid intervals are determined.

5.2.1 Test Description

Some definitions and parameters are given as:

S: Binary sequence

α: Significance level (False positive probability – the probability that a correctly func-

tioning noise source will fail the test on a given output.)

W : Window size (Length of each subsequence)

k: Repetition number for each test

Ti: Random variable

Ii: Valid interval for the random variable Ti
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Binary sequence S is divided into k non-overlapping subsequences of length W -bit.

If the length of the sequence is greater than k.W , the remaining terms will be omitted.

This test suite is constructed by seven random variables, to preserve the significance

level α for the total evaluation, total significance levels αi of each random variable

can be evaluated by the following formula:

α = 1− (1− αi)
7

Since each random variable is employed k-times, to test subsequences of S, for each

repeated test significance levels β can be evaluated by the following formula:

αi = 1− (1− β)k

β determines the valid intervals Ii s for each test. According to probability distri-

bution functions of random variables, for each random variable valid intervals are

determined. (This part contains some detailed calculation processes.)

The sequence S is deemed to pass test i, if for each subsequence of S, Ti is in the

valid interval Ii. The algorithm of the test suite is as follows:

Algorithm 1 Health Test Suite
INPUT: A binary sequence S

1: Divide S into subsequences si s

2: for i = 1 to 7 do

3: for j = 1 to k do

4: if Ti(sj) ̸∈ Ii, "test i failed" then

5: end if

6: end for

7: end for

8: “pass"
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5.2.2 Random Variables

In this section, definitions, probability distribution functions, and some useful recur-

sions of selected random variables used in the health test suite are given. For defini-

tions and mathematical details of random variables [18] is used, more details of the

random variables can be seen in [18].

Let Ωn be the set of all binary sequences of length n. For a binary sequence S =

(s1, s2, · · · , sn) of length n, where si ∈ {0, 1} for each i, a random variable is de-

fined as T : Ωn → T where T is a finite subset of non-negative integers.

5.2.2.1 Weight

Weight is defined as the number of 1’s in the given sequence S:

T (S) =
n∑

i=1

si

For example; weight of the sequence S = (0111001010011010) is 9.

Probability Distribution Function:

Fn(k) = 2−n

k∑
i=0

(
n

i

)

Useful Recursions: Initial values:F1(0) = 1, F1(1) =
1

2
For n ≥ 2 and k = 0

Fn(0) =
1

2
Fn−1(0)

For n ≥ 2 and k ≥ 1

Fn(k) =
1

2
[Fn−1(k) + Fn−1(k − 1)]

Whenever k ≥ n, Fn(k) = 1.

5.2.2.2 Number of Total Runs

A run is defined as consecutive identical bits of the sequence. The number of total

runs counts the runs of the given sequence S:

T (S) = Number of total runs of S
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For example; the sequence S = (0111001010011010) has 11 runs: 0, 111, 00, 1, 0, 1,

00, 11, 0, 1 and 0.

Probability Distribution Function:

Fn(k) = 2−n+1

k∑
i=0

(
n− 1

i− 1

)

Useful Recursions: Initial values:F1(0) = 0, F1(1) = 1

For n ≥ 2 and k = 1

Fn(0) =
1

2
Fn−1(0)

For n ≥ 2 and k ≥ 2

Fn(k) =
1

2
[Fn−1(k) + Fn−1(k − 1)]

Whenever k ≥ n, Fn(k) = 1.

5.2.2.3 Number of Runs of Length-1

Number of runs of length-1 counts the number of lengths of 1 runs of the given se-

quence.

T (S) = Number of runs of Length-1S

For example; the sequence S = (0111001010011010) has 11 runs: 0, 111, 00, 1, 0, 1,

00, 11, 0, 1 and 0 so the number of runs of length-1 is 7.

Probability Distribution Function: Let C1(n, k) be the number of sequences of

length n, containing k runs of length-1.

Fn(k) = 2−n+1
( n∑

i=1

C1(n− i, k)− C1(n− 1, k) + C1(n− 1, k − 1)
)

Useful Recursions:

C1(n, k) = 2C1(n− 1, k)− C1(n− 1, k) + C1(n− 2, k)+

C1(n− 1, k − 1)− C1(n− 2, k − 1)
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5.2.2.4 Overlapping Templates

This random variable counts the frequency of a predefined template of length l in the

overlapping l-bit divisions of the given sequence.

T (S) = Frequency of a predefined template in S

For example; in the sequence S = (0111001010011010) the template 11 of length-2

is seen 3 times.

Probability Distribution Functions: For this test suite templates of length 4 are

used, according to the overlapping structure of the templates their probability distri-

bution functions are given as follows:

Let T (n, k) be the number of sequences of length n with k overlapping substrings of

length 4.

0-overlapping templates: 0001, 0011, 0111, 1000, 1100, 1110.

T (n, 0) = 2T (n− 1, 0)− T (n− 4, 0)

T (n, k) =


0 if n < 4k

1 if n = 4k

2T (n− 1, k)− T (n− 4, k) + T (n− 4, k − 1) if n > 4k

1-overlapping templates: 0010, 0100, 1011, 1101, 0110, 1100.

T (n, 0) = 2T (n− 1, 0)− T (n− 3, 0) + T (n− 4, 0)

T (n, k) =



0 if n < 3k + 1

1 if n = 3k + 1

2T (n− 1, k)− T (n− 3, k)+

T (n− 4, k) + T (n− 3, k − 1)−

T (n− 4, k − 1) if n > 3k + 1

2-overlapping templates: 0101, 1010.

T (n, 0) = 2T (n− 1, 0)− T (n− 2, 0) + 2T (n− 3, 0)− T (n− 4, 0)
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T (n, k) =



0 if n < 2k + 2

1 if n = 2k + 2

2T (n− 1, k)− T (n− 2, k)+

2T (n− 3, k)− T (n− 4, k)+

T (n− 2, k − 1)− 2T (n− 3, k − 1)+

T (n− 4, k − 1) if n > 2k + 2

3-overlapping templates: : 0000, 1111.

T (n, 0) = T (n− 1, 0) + T (n− 2, 0) + T (n− 3, 0) + T (n− 4, 0)

T (n, k) =



0 if n < k + 3

1 if n = k + 3

T (n− 1, k) + T (n− 2, k)+

T (n− 3, k) + T (n− 4, k)+

T (n− 1, k − 1)− T (n− 2, k − 1)−

T (n− 3, k − 1)− T (n− 3, k − 1) if n > k + 3

Probabilities for each i-overlapping template can be evaluated by

Fn(k) =
T (n, k)

2n

To construct overlapping template tests, from each i-overlapping template set a repre-

sentative template is chosen instead of testing all possible templates, and test is done

with four selected templates.
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5.3 Application

5.3.1 Experimental Parameters and Boundary Values

To describe an application of the health test suite two parameter sets are chosen as

follows.

Parameter Set 1: For the window size W = 1024 and repetition number k = 976,

nearly 1 million bits of the sequence can be tested. If significance level of the test suite

is determined as α = 2−33, for each random variable critical values are evaluated as:

α = 1− (1− αi)
7

Then for each i, αi = 2−35. Since each random variable is employed 976-times, for

each repeated test significance levels β can be evaluated by the following formula:

αi = 1− (1− β)976

Then β ≈ 2−45. By using probability distribution functions or recursions of them for

each random variable, valid intervals are chosen as follows. (Since probability distri-

bution functions of random variables are discrete, the boundary values were selected

approximately to be closest to β/2.)

Table 5.1: Health Tests Boundary Values for 1 million bit
Random Variable Left Boundary Value Right Boundary Value Significance Level (≈)

Weight 392 634 2−45

Run 391 633 2−45

Runs of Length 1 133 402 2−45

1-Overlapping Template 22 111 2−45

2-Overlapping Template 17 124 2−45

3-Overlapping Template 14 136 2−45

4-Overlapping Template 4 186 2−45

Parameter Set 2: For the window size W = 1024 and repetition number k = 20,

health tests are employed for nearly 20 000 bit of the sequence. Similarly, significance

level of the test suite is determined as α = 2−33, for each random variable critical

values are evaluated as:

α = 1− (1− αi)
7
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Then for each i, αi = 2−35. Since each random variable is employed 20-times, for

each repeated test significance levels β can be evaluated by the following formula:

αi = 1− (1− β)20

Significance level is approximately evaluated as β ≈ 2−40 for each repetition. By

using probability distribution functions or recursions of them for each random vari-

able, valid intervals are chosen as follows. (Since probability distribution functions

of random variables are discrete, the boundary values were selected approximately to

be closest to β/2.)

Table 5.2: Health Tests Boundary Values for 20 000 bit
Random Variable Left Boundary Value Right Boundary Value Significance Level (≈)

Weight 400 625 2−40

Run 399 624 2−40

Runs of Length 1 140 391 2−40

1-Overlapping Template 24 107 2−40

2-Overlapping Template 19 119 2−40

3-Overlapping Template 16 130 2−40

4-Overlapping Template 5 175 2−40

5.3.2 Experimental Results

The following datasets were simulated for the experiments. Each generated sequence

is of length 1 000 000. When health tests are applied with parameters of Parameter Set

2, the first 20 000 bit of the sequences are tested, and the remaining bits are omitted.

1. Uniform distribution without any known bias. AES-128 The sequences are

generated using the Cipher Block Chaining (CBC) mode of the block cipher

Advanced Encryption Standard (AES) [9]. This dataset contains 200 sequences

of length 1 000 000. In these sequences, all outputs are assumed to have an

equal probability of occurring, and are independent. Hence, they are assumed

to be random.

2. Uniform distribution without any known bias. QUANTIS IDQ-QUANTIS

[12] is a true random number generator, generation mechanism of QUANTIS

is based on quantum physics. To generate sequences, there is no need for seed

or input sequence. By using IDQ-QUANTIS 200 binary sequences of length
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1 000 000 are generated. The device is certified to the highest levels of entropy

and randomness testing, outputs are assumed to be random.

3. Biased binary distribution with Pr(1)=0.7 and

Pr(0)=0.3. The dataset follows a biased binary distribution, where the proba-

bility of observing a 0 is 0.7, and the probability of observing a 1 is 0.3. To gen-

erate this dataset, 200 sequences of length 1 000 000 were generated. This data

is generated using the random number generator Mersenne Twister (MT19937)

in C++.

4. Biased binary t-bit Duplication t-bit duplication is defined as copying con-

secutive t-bit non-overlapping blocks of the sequence to the end of each block.

This method doubles the length of the sequence. Initial sequences of length

500 000 are generated by CBC-mode of AES-128. Initial sequences are trans-

formed with 128-bit, 256-bit, and 100-bit duplication. Three datasets are gen-

erated, each containing 200 binary sequences of length 1 000 000.

Table 5.3: Health tests results for simulated data sets with Parameter Set 1
Weight Run Run1 Temp1 Temp2 Temp3 Temp4

AES CBC
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0

QUANTIS
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0

Entropy=0.5
pass 0 0 200 0 0 200 0
fail 200 200 0 200 200 0 200

128-dup
pass 199 200 200 200 200 200 200
fail 1 0 0 0 0 0 0

256-dup
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0

100-dup
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0
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Table 5.4: Health tests results for simulated data sets with Parameter Set 2
Weight Run Run1 Temp1 Temp2 Temp3 Temp4

AES CBC
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0

QUANTIS
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0

Entropy=0.5
pass 0 101 200 0 0 200 5
fail 200 99 0 200 200 0 195

128-dup
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0

256-dup
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0

100-dup
pass 200 200 200 200 200 200 200
fail 0 0 0 0 0 0 0

Health tests are employed for each dataset and numbers of passes and fails of each

individual test are given in Table 5.3 and Table 5.4, for different parameters. Ex-

perimental results show that nearly all sequences of uniformly distributed datasets

generated by AES-128 and IDQ-QUANTIS pass health tests as expected. The se-

quences of the dataset follow a biased binary distribution, with the probability of

observing a 1 being 0.7 and the probability of observing a 0 being 0.3, mostly failing

from weight, run and template tests. Weight and run tests detect the sequences of the

dataset generated by t-bit duplication, with parameter set 1.

In this study, health tests for are examined, these are used to detect corruption and

error in the working mechanism of the entropy source of a RNG and give warnings

about disruptions in the process. Existing methods are revisited, and a basic model of

the health test suite is introduced with random variables weight, run, runs of length 1

and overlapping templates.
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CHAPTER 6

CONCLUSION

In cryptography, random numbers are used in almost all applications, and the security

of these applications depends on the assumption that these numbers are generated

uniformly at random and are unpredictable. In this thesis, we focus on testing random

number generators.

Standards and recommendations for randomness testing have been examined, and we

focus on statistical methods for entropy estimation of NIST SP 800-90B [32]. The

NIST Special Publication (SP) 800-90B, Recommendation for the Entropy Sources

Used for Random Bit Generation is analyzed with statistical methods to evaluate ac-

curacy, effectiveness, and limitations of the NIST SP 800-90. In this part of the

thesis, accuracy is evaluated by investigating the estimation results for simulated ran-

dom numbers with known entropy. We analyze the correlation between entropy es-

timates by using Pearson and Spearman’s metrics, we study the impacts of deter-

ministic transformations on the estimators and impact of IID-Assumption tests on

estimators.

We expect the provided results to help improve the accuracy of NIST’s entropy es-

timation strategy and promote similar studies to consider the impacts of commonly

used conditioning or post-processing functions.

We propose a new black-box, statistical-based entropy estimator called index-value

coincidence estimate. This estimator is used to estimate both min-entropy and Shan-

non entropy as the technique first estimates the probability distribution. Experiments

show that index-value coincidence estimate gives expected and accurate entropy es-
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timations for simulated datasets and may be employed with the other estimators of

NIST SP 800-90B to increase the number of estimators and accuracy of results.

Moreover, we investigate the details of existing health tests for TRNGs. We intro-

duce a statistical model by using distributions of random variables weight, run, runs

of length 1 and overlapping templates we construct a health test suite to detect cor-

ruption and error in the working mechanism of the entropy source and give warnings

about disruptions in the process simultaneously, for cryptographic random number

generators.
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